52 research outputs found

    Shadows and Twisted Variables

    Get PDF
    We explain how a new type of fields called shadows and the use of twisted variables allow for a better description of Yang-Mills supersymmetric theories. (Based on lectures given in Cargese, June 2006.)Comment: Cargese Jun 200

    Twisted Superspace

    Get PDF
    We formulate the ten-dimensional super-Yang-Mills theory in a twisted superspace with 8+1 supercharges. Its constraints do not imply the equations of motion and we solve them. As a preliminary step for a complete formulation in a twisted superspace, we give a superspace path-integral formulation of the N=2, d=4 super-Yang-Mills theory without matter. The action is the sum of a Chern--Simons term depending on a super-connection plus a BF-like term. The integration over the superfield B implements the twisted superspace constraints on the super-gauge field, and the Chern-Simons action reduces to the known action in components

    Shadow Fields and Local Supersymmetric Gauges

    Full text link
    To control supersymmetry and gauge invariance in super-Yang-Mills theories we introduce new fields, called shadow fields, which enable us to enlarge the conventional Faddeev-Popov framework and write down a set of useful Slavnov-Taylor identities. These identities allow us to address and answer the issue of the supersymmetric Yang-Mills anomalies, and to perform the conventional renormalization programme in a fully regularization-independent way.Comment: 2

    Supersymmetric renormalization prescription in N = 4 super-Yang--Mills theory

    Get PDF
    Using the shadow dependent decoupled Slavnov-Taylor identities associated to gauge invariance and supersymmetry, we discuss the renormalization of the N=4 super-Yang-Mills theory and of its coupling to gauge-invariant operators. We specify the method for the determination of non-supersymmetric counterterms that are needed to maintain supersymmetry

    Topological Vector Symmetry of BRSTQFT and Construction of Maximal Supersymmetry

    Get PDF
    The scalar and vector topological Yang-Mills symmetries determine a closed and consistent sector of Yang-Mills supersymmetry. We provide a geometrical construction of these symmetries, based on a horizontality condition on reducible manifolds. This yields globally well-defined scalar and vector topological BRST operators. These operators generate a subalgebra of maximally supersymmetric Yang-Mills theory, which is small enough to be closed off-shell with a finite set of auxiliary fields and large enough to determine the Yang-Mills supersymmetric theory. Poincar\'e supersymmetry is reached in the limit of flat manifolds. The arbitrariness of the gauge functions in BRSTQFTs is thus removed by the requirement of scalar and vector topological symmetry, which also determines the complete supersymmetry transformations in a twisted way. Provided additional Killing vectors exist on the manifold, an equivariant extension of our geometrical framework is provided, and the resulting "equivariant topological field theory" corresponds to the twist of super Yang-Mills theory on Omega backgrounds.Comment: 50 page

    Molecular Imaging of Microglial Activation in Amyotrophic Lateral Sclerosis

    Get PDF
    There is growing evidence of activated microglia and inflammatory processes in the cerebral cortex in amyotrophic lateral sclerosis (ALS). Activated microglia is characterized by increased expression of the 18 kDa translocator protein (TSPO) in the brain and may be a useful biomarker of inflammation. In this study, we evaluated neuroinflammation in ALS patients using a radioligand of TSPO, 18F-DPA-714. Ten patients with probable or definite ALS (all right-handed, without dementia, and untreated by riluzole or other medication that might bias the binding on the TSPO), were enrolled prospectively and eight healthy controls matched for age underwent a PET study. Comparison of the distribution volume ratios between both groups were performed using a Mann-Whitney’s test. Significant increase of distribution of volume ratios values corresponding to microglial activation was found in the ALS sample in primary motor, supplementary motor and temporal cortex (p = 0.009, p = 0.001 and p = 0.004, respectively). These results suggested that the cortical uptake of 18F-DPA-714 was increased in ALS patients during the ‘‘time of diagnosis’’ phase of the disease. This finding might improve our understanding of the pathophysiology of ALS and might be a surrogate marker of efficacy of treatment on microglial activation

    Procedure for the fine delay adjustment of the CMS tracker

    Get PDF
    One of the crucial aspects of the commissioning of the CMS silicon tracker will be the absolute timing adjustment of each module, to accommodate both delays introduced by the hardware configuration and effects due to the time of flight of particles. The objective is to be optimally synchronized with the bunch-crossing to maximize the efficiency while minimizing the number of remnant hits from the adjacent bunch-crossings. In the present note, a procedure to reach that goal is studied. Monte Carlo studies as well as the analysis of data from the commissioning of the detector are used to assess the time needed and the resolution that can be achieved. Critical aspects are discussed, and results from the first implementation are presented

    Charged Particle Tracking in Real-Time Using a Full-Mesh Data Delivery Architecture and Associative Memory Techniques

    Full text link
    We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector

    Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker

    Get PDF
    The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. Fro
    • …
    corecore