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1 Introduction

Non-linear aspects and the non-existence of a supersymmetry-preserving regulator make

the definition of supersymmetric theories a subtle task. We explain in these lectures notes

that the introduction of new fields, called shadows, clarify the construction of Yang–Mills

supersymmetric theories.

In the formalism that we develop, a supersymmetric theory is defined in terms of

classical fields (gauge fields and matter fields), Faddeev–Popov ghosts and shadow fields.

Gauge invariance is expressed by the BRST invariance, with a graded differential oper-

ator s . The shadows fields permit the replacement of the notion of the supersymmetry

generators by that of a differential operator Q, consistent with s . The operator Q acts

as an ordinary supersymmetry transformation on the gauge invariant functions of the

physical fields. Moreover, there exist gauges for which Q annihilates both the classical

action and the s -exact gauge-fixing action.

The advantage of having both operators s and Q acting on the extended set of fields is

that two independent Slavnov–Taylor identities can be associated with supersymmetry

and BRST invariances. Observables can be appropriately defined for understanding

their gauge and supersymmetry covariance : they are the cohomology of the BRST

symmetry. Anomalies and renormalization can be conventionally analyzed, considering

insertions of arbitrary composite operators. This defines an unambiguous renormalization

process of Yang–Mills supersymmetric theory, for any given choice of the regularization

of divergences.

Shadows can be used to demonstrate non-renormalization theorems. Moreover, the

proofs are greatly simplified by twisting the spinor fields in tensors. In fact, twisted

variables permit one to determine off-shell closed sub-sectors of supersymmetry algebra

that are relevant for the non-renormalization properties.

Both differential operators s and Q of supersymmetric theories satisfy extended cur-

vature conditions, analogous to those of the topological BRST operator of topological

quantum field theory. This similarity suggests that some of the relevant equations for

the non-renormalization theorems have a geometrical meaning .

2 Introducing the shadow fields

To fix ideas, consider the N = 4, d = 4 supersymmetric action in flat space. The

physical fields of this gauge invariant theory with SO(3, 1) Lorentz symmetry are the
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gauge field Aµ, the SU(4)-Majorana spinor λ, and the six scalar fields φi in the vector

representation of SO(6) ∼ SU(4). All fields are in the adjoint representation of a compact

gauge group that we will suppose simple. The classical action is uniquely determined by

supersymmetry, Spin(3, 1) × SU(4) global symmetry and gauge invariance. It reads

S ≡

∫

d4xTr
(

−
1

4
FµνF

µν −
1

2
Dµφ

iDµφi +
i

2

(

λ /Dλ
)

−
1

2

(

λ[φ, λ]
)

−
1

4
[φi, φj][φi, φj]

)

(1)

with φ ≡ φiτi and the supersymmetry transformations δSusy

δSusyAµ = i
(

ǫγµλ
)

δSusyφi = −
(

ǫτ iλ
)

δSusyλ =
(

/F + i /Dφ +
1

2
[φ, φ]

)

ǫ (2)

For the sake of convenience, we can chose the parameter ǫ as a commuting spinor. In

this way, δSusy
2

represents the commutator of two supersymmetry transformations, with

δSusy
2
≈ δgauge(ǫ[φ − i /A]ǫ) − i(ǫγµǫ)∂µ (3)

Here ≈ stands for the equality modulo equations of motion.

In view of the last equation, the quest of a quantum field theory with supersymmetry

implies the following remarks.

The presence of equations of motion in the right-hand-side of (3) is a rather annoying

technical difficulty. However, it can always be turned around in quantum field theory,

by using the Batalin-Vilkowiski formalism. Moreover, as we will shortly see, even in the

case where no auxiliary fields exist, it can be practically resolved in the proofs for the

consistency of the quantum theory by using twisted variables.

The existence of the field dependent gauge transformation in the commutator of two

supersymmetry transformations (3) is a deeper problems. It concretely implies that one

cannot give sense to the notion of a δSusy -invariant gauge-fixing action. This fact explicitly

shows up when one uses the Faddeev-Popov procedure. Suppose that one fixes the gauge,

say in a Feynman–Landau gauge. This process is independent of supersymmetry and

gives an action

Sgf = S +

∫

Tr
((∂A)2

2α
− Ω̄∂DΩ

)

(4)

This lagrangian breaks gauge invariance in the desired way, but one cannot find a def-

inition of δSusy acting on the scalar Faddeev–Popov ghosts Ω and Ω̄ that is compatible

with the closure relation (3). This forbids one to define the Ward identities associated to

supersymmetry with usual techniques. Therefore, one must improve the techniques cur-

rently used for ordinary global symmetries coupled to gauge invariance. Since there are
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cases where an off-shell superfield formalism does not exist (in particular for the N = 4

theory) and since no regulator exist that can maintain both supersymmetry and gauge

invariance, such improvement must follow from new ideas.

One method for handling the problems caused by the gauge transformations in the

closing relations for the supersymmetry transformations of classical fields is by introduc-

ing an additional anticommuting scalar field c valued in the Lie algebra of the gauge

group. On can define in this way a differential operator Q out of δSusy , which is nilpotent

modulo a translation [1]

Q2 ≈ −i(ǫγµǫ)∂µ (5)

The way to do so is to define the action of Q on all the physical fields ϕ and c as follows

Qϕ = δSusy (ǫ)ϕ − δgauge(c)ϕ

with

Qc = (ǫ[φ − i /A]ǫ) − c2 (6)

The field c will be called the shadow field, and its presence will allow one to solve at

once all questions discussed above, with the conclusion that the notion of the operator

δSusy must be replaced by that of the differential Q at the quantum level, in a way that

is analogous to the enhancement of gauge invariance into BRST symmetry.

We see that the action of Q on the classical fields is linear in the global parameters

ǫ and on the field c. Since, for the classical fields, Q is the sum of a supersymmetry

transformation and a gauge transformation, δSusy invariance is the same as Q invariance

for gauge invariant quantities.

The action of Q on c is quadratic both in c and ǫ, and Qǫ = 0. We have the existence

of a grading equal to the shadow number, which is zero for the classical fields, and one

for c and ǫ.

In practice, one must do computations with a BRST invariant gauge-fixed theory,

where interacting Faddeev–Popov ghosts propagate. In fact, renormalization generally

mixes gauge invariant operators with non gauge-invariant BRST-exact operators. Thus,

observables must be defined through the cohomology of the BRST operator s for ordinary

gauge symmetry. To control the covariance under supersymmetry of observables, the

BRST Ward identity and the supersymmetry Ward identities must be disentangled. It

follows that Q and s must be independent and consistent operators (i.e., Q and s must

anticommute). Therefore the scalar field c cannot be identified with the Faddeev–Popov

ghost Ω.
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The idea of shadows [1] is thus to introduce new fields, in the form of BRST doublets,

in order not to affect physical quantities, and to redefine the supersymmetry transfor-

mations of classical fields by addition of a compensating gauge transformations with a

parameter equal to the shadow field c. Moreover, Eq. (5) must be satisfied for all fields.

The action of the BRST operator s on all physical fields is nothing but a gauge

transformation of parameter Ω with

s ϕ = −δgauge(Ω)ϕ s Ω = −Ω2 (7)

and since the shadow c must not affect the physical sector of the theory we introduce the

commuting scalar µ such that (c, µ) builds a trivial BRST doublet

s c = µ s µ = 0 (8)

We want to impose Eq. (5) on all fields, as well as

s 2 = s Q + Q s = 0 (9)

In fact, by a direct computation, we find that the algebra (5) and (9) is satisfied with

QΩ = −µ − [c, Ω] Qµ = −[(ǫφǫ), Ω] + i(ǫγµǫ)DµΩ − [c, µ] (10)

We will shortly write a curvature equation that explains these transformation laws, and

in particular the property

s c + QΩ + [c, Ω] = 0 (11)

In order to define the Ward identities associated to supersymmetry, we need a BRST-

exact gauge-fixing that is Q-invariant. Such gauge-fixing will be said to be supersym-

metric. To define it, we introduce the trivial quartet µ̄, c̄, Ω̄, b, with

s µ̄ = c̄

Qµ̄ = Ω̄

s c̄ = 0

Qc̄ = −b

s Ω̄ = b

QΩ̄ = −i(ǫγµǫ)∂µµ̄

s b = 0

Qb = i(ǫγµǫ)∂µc̄
(12)

The quantum field theory has an internal bigrading, the ordinary ghost number and

the new shadow number. The Q transformation of fields depend on the constant commut-

ing supersymmetry parameter. The latter is understood as an ordinary gauge parameter

for the quantum field theory, but observables will not depend on them, owing to BRST

invariance.
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3 Supersymmetric shadow dependent lagrangians

In order to control supersymmetry and renormalize the theory, we start from a renor-

malizable s and Q invariant gauge-fixed action, which determines the Feynman rules. A

class of such actions is of the form:

Sgf [ϕ, Ω, Ω̄, b, c, c̄, µ, µ̄] = S[ϕ] − s Q

∫

Tr µ̄
(

∂A +
α

2
b
)

(13)

One has indeed

− s Q

∫

Tr µ̄
(

∂A +
α

2
b
)

= − s

∫

Tr
(

Ω̄
(

∂A +
α

2
b
)

+ µ̄Q
(

∂A +
α

2
b
))

=

∫

Tr
(

−
α

2
b2 − b∂A − Ω̄∂DΩ + . . .

)

(14)

Here, the dots stand for terms that imply a propagation of the pairs of shadows µ, µ̄ and

c, c̄. They are given by an easy computation. They imply ǫ-dependent propagators and

vertices. However, observables are defined by the cohomology of the BRST operator s ,

so that their expectation values are independent on the values of ǫ, since the later occur

through an s -exact term.

In the absence of anomaly, one can enforce both Ward identities for the s and Q in-

variances. This means that one can concretely impose renormalization conditions which

enforce these identities at any given finite order of perturbation theory, within the frame-

work of any type of regularization for divergences.

The prize one has to pay for having shadows is that they generate a perturbative

theory with more Feynman diagrams. If we consider physical composite operators that

mix through renormalization with BRST-exact operators, the latter can depend on all

possible fields that propagate, and we have in principle to consider a dependence on

the whole set of fields in order to compute the supersymmetry-restoring non-invariant

counterterms. For certain “simple” Green functions, which cannot mix with BRST-

exact composite operators, there exist gauges in which some of the additional fields can

be integrated out, in a way that justifies, a posteriori, the work of Stöckinger et al. for

the N = 1 theories [2]. By doing this elimination, one loses the algebraic meaning, but

one may gain in computational simplicity.

The shadow dependent methodology is suitable for non-ambiguously computing the

non-invariant counterterms that maintain supersymmetry, BRST invariance and the R-

symmetry. It applies to the renormalization of all supersymmetric theories.
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4 Renormalization

4.1 Ward identities for the theory

By introducing sources associated to the non-linear s , Q and s Q transformations of

fields, we get the following ǫ-dependent action, which initiates a BRST-invariant super-

symmetric perturbation theory1

Σ ≡
1

g2
S −

∫

d4xTr
(

b∂µAµ +
α

2
b2 − c̄∂µ

(

Dµc + i(ǫγµλ)
)

−
iα

2
(ǫγµǫ)c̄∂µc̄

+ Ω̄∂µDµΩ − µ̄∂µ
(

Dµµ + [DµΩ, c] − i(ǫγµ[Ω, λ])
)

)

+

∫

d4xTr

(

A(s)

µ DµΩ + λ
(s)

[Ω, λ] − φ(s)

i [Ω, φi] + A(Q)

µ QAµ − λ
(Q)

Qλ + φ(Q)

i Qφi

+ A(Qs)

µ s QAµ − λ
(Qs)
s Qλ + φ(Qs)

i s Qφi + Ω(s)Ω2 − Ω(Q)QΩ − Ω(Qs) s QΩ

− c(Q)Qc + µ(Q)Qµ +
g2

2
(λ

(Q)
− [λ

(Qs)
, Ω])M(λ(Q) − [λ(Qs), Ω])

)

(15)

Because of the s and Q invariances, the action is invariant under the both Slavnov–

Taylor identities defined in [1], which are associated respectively to gauge and supersym-

metry invariance, S(s)(Σ) = S(Q)(Σ) = 0. For the sake of illustration, let us present the

supersymmetry Slavnov–Taylor operator of the N = 4 theory2

S(Q)(F ) ≡

∫

d4xTr

(

δRF

δAµ

δLF

δA(Q)
µ

+
δRF

δλ

δLF

δλ
(Q)

+
δRF

δφi

δLF

δφ(Q)

i

+
δRF

δc

δLF

δc(Q)
+

δRF

δµ

δLF

δµ(Q)

+
δRF

δΩ

δLF

δΩ(Q)
− A(s)

µ

δLF

δA(Qs)
µ

+ λ
(s) δLF

δλ
(Qs)

− φ(s)

i

δLF

δφ(Qs)

i

+ Ω(s)
δLF

δΩ(Qs)
− b

δLF

δc̄
+ Ω̄

δLF

δµ̄

−i(ǫγµǫ)
(

−∂µA
(Qs)

ν

δLF

δA(s)
ν

+∂µλ
(Qs) δLF

δλ
(s)

−∂µφ(Qs)

i

δLF

δφ(s)

i

+∂µΩ
(Qs)

δLF

δΩ(s)
−∂µc̄

δLF

δb
+∂µµ̄

δLF

δΩ̄

+ A(Q)

ν ∂µA
ν + λ

(Q)

∂µλ + φ(Q)

i ∂µφ
i + Ω(Q)∂µΩ + c(Q)∂µc + µ(Q)∂µµ

)

)

(16)

If no anomaly occurs, the Slavnov–Taylor identities S(s)(Γ) = S(Q)(Γ) = 0 completely

determines all ambiguities of the supersymmetric effective action Γ, order by order in

perturbation theory.

1 M is the 32 × 32 matrix M ≡ 1

2
(ǫγµǫ)γµ + 1

2
(ǫτiǫ)τ

i − ǫǫ. It occurs because Q2 is a pure

derivative only modulo equations of motion. The dimension of Aµ, λ, φi, Ω, Ω̄, b, µ, µ̄, c and c̄

are respectively 1, 3

2
, 1, 0, 2, 2, 1

2
, 3

2
, 1

2
and 3

2
. Their ghost and shadow numbers are respectively

(0, 0), (0, 0), (0, 0), (1, 0), (−1, 0), (0, 0), (1, 1), (−1,−1), (0, 1) and (0,−1).
2 The linearized Slavnov–Taylor operator S(Q)|Σ [1] verifies S(Q)|Σ

2 = −i(ǫγµǫ)∂µ, which solves in

practice the fact that Q2 is a pure derivative only modulo equations of motion.
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4.2 Anomalies

In [1, 3], we showed the absence of anomaly for the N = 2, 4 and the stability of the

N = 1, 2, 4 action Σ under renormalization. Thus, all Green functions of the complete

theory involving shadows and ghosts can be renormalized, in any given regularization

scheme, so that supersymmetry and gauge invariance are preserved at any given finite

order.

Let us sketch the proof that no supersymmetry anomaly can exist for N = 2, 4, and

that for N = 1 the only possible anomaly is the Adler–Bardeen anomaly.

An anomaly in a supersymmetry theory can only occur if a pair of local functionals

A and B of the fields and sources can violate the pair of Ward identities for both s and

Q invariances. For instance, when one renormalizes the theory at the one-loop level, the

result of the computation can violate the Ward identities by local terms A and B, as

follows

S(s)|ΣΓ1 loop = ~

∫

A S(Q)|ΣΓ1 loop = ~

∫

B (17)

If either A and B cannot be eliminated by adding local counterterms to Γ1 loop, which

means that they are not S(s)|Σ and S(Q)|Σ exact, one has an anomaly, and the theory

cannot be renormalized while maintaining either supersymmetry or gauge invariance, or

both. In [1, 3], we proved that the solution A and B of Eq. (17), modulo S(s)|Σ and S(Q)|Σ

exact terms, can only depend on the fields, and thus, the consistency relation for s and

Q implies:

s

∫

A = 0 Q

∫

A + s

∫

B = 0 Q

∫

B = 0 (18)

In fact, the first equation implies that A must be the consistent Adler-Bardeen anomaly,

which descends formally from the Chern class Tr FFF . But then, the Q symmetry is so

demanding that the second and third equations have no solution B 6= 0 for N = 2, 4. Thus

there cannot be an anomaly for these cases. For N = 1, the constraint is weaker, and the

Adler-Bardeen anomaly admits a supersymmetric counterpart B. However, the Adler–

Bardeen theorem holds, and if the one-loop coefficient of the Adler–Bardeen anomaly

cancels, it will cancel to all order.

Of course, these are well known facts. However, by having introduced the shadows,

both Ward identities for supersymmetry and gauge invariance allow a safe verification of

the status of gauge and supersymmetry anomalies by the standard consistency argument,

valid to all order of perturbation theory.
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4.3 Ward identities for the observables

Observables of a super-Yang–Mills theory are Green functions of local operators in the

cohomology of the BRST linearized Slavnov–Taylor operator S(s)|Σ. From this definition,

these Green functions are independent of the gauge parameters of the action, including ǫ.

Classically, they are represented by gauge-invariant polynomials of the physical fields

[1, 4]. We introduce classical sources u for all these operators. We must generalize the

supersymmetry Slavnov–Taylor identity for the extended local action that depends on

these sources. Since the supersymmetry algebra does not close off-shell, other sources

v, coupled to unphysical S(s)|Σ-exact operators, must also be introduced. We define the

following field and source combinations ϕ∗

A∗
µ ≡ A(Q)

µ − ∂µc̄ − [A(Qs)

µ − ∂µµ̄, Ω]

φ∗
i ≡ φ(Q)

i − [φ(Qs)

i , Ω]

c∗ ≡ c(Q) − [µ(Q), Ω]

λ∗ ≡ λ(Q) − [λ(Qs), Ω]
(19)

They verify S(s)|Σϕ∗ = −[Ω, ϕ∗]. The collection of local operators coupled to the v’s is

made of all possible gauge-invariant (i.e. S(s)|Σ-invariant) polynomials in the physical

fields and the ϕ∗’s. These operators have ghost number zero, and their shadow number

is negative, in contrast with the physical gauge-invariant operators, which have shadow

number zero.

The relevant action is thus Σ[u, v] ≡ Σ + Υ[u, v], with

Υ[u, v] ≡

∫

d4x

(

uij

1

2
Tr φiφj + uα

i Tr φiλα + uijk

1

3
Tr φiφjφk

+ Kuµ
ijTr

(

iφ[iDµφ
j] +

1

8
λγµτ

ijλ
)

+ Kuµν
i Tr

(

Fµνφ
i −

1

2
λγµντ

iλ
)

+ Ku5
µ

1

2
Tr λγ5γ

µλ

+ CuijkTr
(1

3
φ[iφjφk] +

1

8
λτ ijkλ

)

+ Cuµ
ijTr

(

iφ[iDµφ
j] −

1

4
λγµτ

ijλ
)

+ Cuµν
i Tr

(

Fµνφ
i +

1

4
λγµντ

iλ
)

+ uα
ijTr φiφjλα + iuµ α

i Tr Dµφ
iλα + uµν αTr Fµνλα + · · ·

+ vα
i Tr φiλ∗

α + vαβTr λαλ∗
β + vµ

i Tr φiA∗
µ + vijTr φiφ∗ j + ivµ α

i Tr Dµφ
iλ∗

α

+ 0vα
i Tr λαφ∗ i + ivµαβTr Dµλαλ∗

β + ivµ
ijTr Dµφiφ∗ j + i −1vµα

i Tr Dµλαφ∗ i + · · ·

)

(20)

Here, the · · · stand for all other analogous operators.

The Slavnov–Taylor operator S(Q) can be generalized into a new one, Sext
(Q), by addition

of terms that are linear in the functional derivatives with respect to the sources u and v,

in such a way that

Sext

(Q)
(Σ[u, v]) = S(Q)(Σ)+Sext

(Q)|Σ
Υ+

∫

d4xTr

(

δRΥ

δAµ

δLΥ

δA∗
µ

+
δRΥ

δλ

δLΥ

δλ
∗ +

δRΥ

δφi

δLΥ

δφ∗
i

)

= 0 (21)
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Indeed, if we were to compute S(Q)(Σ[u, v]) without taking into account the transforma-

tions of the sources u and v, the breaking of the Slavnov–Taylor identity would be a local

functional linear in the set of gauge-invariant local polynomials in the physical fields, A∗
µ,

c∗, φ∗
i and λ∗.

Eq. (21) defines the transformations Sext
(Q)|Σ

of the sources u and v. Simplest examples

for the transformation laws of the u’s are for instance

Sext

(Q)|Σ
uij =−i[γµτ{iǫ]α∂µu

α
j} + ∂µ∂

µv{ij} + 2u{i|kvj}
k + 2uα

{ivj}α − i∂µ(u{i|kv
µ

j}
k + uα

{iv
µ

j}α)

Sext

(Q)|Σ
uα

i = [ǫτ j ]α
(

uij − i∂µ( Kuµ
ij + Cuµ

ij)
)

− 2i[ǫγµ]
α∂ν(

Kuµν
i + Cuµν

i ) + i[γµ]β
α∂µv

β
i

−uij
0vjα − uα

j vi
j + uβ

i v
α

β + uαβviβ + i∂µ(uij
−1vjµα − uβ

i v
µα
β ) (22)

These transformations are quite complicated in their most general expression. However,

for many practical computations of non-supersymmetric local counterterms, we can con-

sider them at v = 0. We define Qu ≡
(

Sext
(Q)|Σ

u
)

|v=0
. By using δSusyΥ[u] + Υ[Qu] = 0 we

can in fact conveniently compute Qu. Notice that Q is not nilpotent on the sources, but

we have the result that Υ[Q2u] is a linear functional of the equation of motion of the

fermion λ.

It is a well-defined process to compute all observables, provided that a complete set

of sources has been introduced. This lengthy process cannot be avoided because there

exists no regulator that preserves both gauge invariance and supersymmetry. We must

keep in mind that renormalization generally mixes physical observables with BRST-exact

operators, and a careful analysis must be done [5].

5 Enforcement of supersymmetry

Once both Ward identities for the Green functions of fields and of observables have been

established, it is a straightforward (but tedious) task to adjust the counterterms that

are necessary to ensure supersymmetry and gauge symmetry at the quantum level. The

possibility of that is warranted by the fact the theory is renormalizable by power counting,

that no anomaly exist, and that the lagrangian is stable. The technical details are given

in [6]. The question of not having a regulator that maintains supersymmetry is irrelevant.

However, in practice, one wishes to preserve the symmetry of the bare action as much as

it is possible, and thus, one uses dimensional reduction regularization, as in [7].
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6 Twisted variables

Using twisted variables for the spines in four dimensions allows one to extract subalgebra

of supersymmetry transformations that close without using equations of motion [3]. This

property allows one to greatly simplify the proofs of finiteness in supersymmetric theories.

Before coming to this point, let us sketch the way the twist works for the N = 4 theory,

by choosing the so-called first twist of this theory.

6.1 N = 4 super-Yang–Mills theory in the twisted variables

The components of spinor and scalar fields λα and φi can be twisted, i.e., decomposed

on irreducible representations of the following subgroup3

SU(2)+ × diag
(

SU(2)− × SU(2)R

)

× U(1) ⊂ SU(2)+ × SU(2)− × SL(2,H) (23)

We redefine SU(2) ∼= diag
(

SU(2)− × SU(2)R

)

. The N = 4 multiplet is decomposed as

follows

(Aµ, Ψµ, η, χI , Φ, Φ̄) (L, hI , Ψ̄µ, η̄, χ̄I) (24)

In this equation, the vector index µ is a “twisted world index”, which stands for the

(1
2
, 1

2
) representation of SU(2)+ ×SU(2). The index I is for the adjoint representation of

the diagonal SU(2). In fact, any given field XI can be identified as a twisted antiselfdual

2-form Xµν−,

Xµν− ∼ XI (25)

by using the flat hyperKähler structure JI
µν .

All 16 components of the SL(2,H)-Majorana spinors can therefore be mapped on the

following multiplets of tensors.

λ → (Ψ(1)

µ , Ψ̄(−1)

µ , χ(−1)

I , χ̄(1)

I , η(−1), η̄(1)) (26)

The scalars φi in the fundamental representation of SO(6) decompose as follows

φi → (Φ(2), Φ̄(−2), L(0), h(0)

I ) (27)

where the superscript states for the U(1) representation. The 16 generators of the su-

persymmetry algebra and the corresponding parameter ǫ are respectively twisted into

Q(1), Q̄(−1), Q(1)

µ , Q̄(−1)

µ , Q(1)

I , Q̄(−1)

I (28)

3Usually, one means by twist a redefinition of the energy momentum tensor that we do not consider

here.
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and

ǫ → (ω(1), ̟(−1), ε(1)µ, ε̄(−1)µ, υ(1)I , ῡ(−1)I) (29)

with

δSusy = ̟Q + ωQ̄ + ε̄µQµ, +εµQ̄µ + ῡIQI + υIQ̄I (30)

The ten-dimensional super-Yang–Mills theory determines by dimensional reduction

the untwisted N = 4 super-Yang–Mills theory. Analogously, the twisted eight-dimensional

N = 2 theory determines the twisted formulation of the N = 4 super-Yang–Mills theory

in four dimensions by dimensional reduction [8, 3].

The twisted N = 2, d = 8 symmetry contains a maximal supersymmetry subalgebra

that closes without the equations of motion. It depends on nine twisted supersymmetry

parameters, which are one scalar ̟ and one eight-dimensional vector εM .

By dimensional reduction (̟, εM) decomposes into (̟, εµ, ω, υI) and the off-shell

representation of supersymmetry remains. The dimensionally reduced four-dimensional

supersymmetry with 9 parameters is

δSusy = ̟Q + ωQ̄ + εµQ̄µ + υIQ̄I (31)

It closes independently of equations of motions to

δSusy
2

= δgauge(Φ̂(φ) + ̟εµAµ) + ̟εµ∂µ (32)

with

Φ̂(φ) ≡ ̟2Φ + ω̟L + ̟υIhI + (ω2 + εµεµ + υIυI)Φ̄ (33)

Moreover, using the extended nilpotent differential d + s + Q−̟iε, the action of Q

and s on all fields is simply given by the definition of the following extended curvature

F ≡ (d + s + Q − ̟iε)
(

A + Ω + c
)

+
(

A + Ω + c
)2

= F + Ψ̂(λ) + Φ̂(φ) (34)

and the Bianchi relation that it satisfies

(d + s + Q − ̟iε)F + [A + Ω + c , F ] = 0 (35)

Here the linear function of the gluini Ψ̂(λ) is4

Ψ̂(λ) ≡ ̟Ψ + ωΨ̄ + υIJI(Ψ̄) + g(ε)η + iεχ (36)

4Given a vector field V , one defines the 1-form g(V ) ≡ gµνV µdxν , and the vector (JI(V ))µ ≡ JI
µ

νV ν .

Ψ̂(λ)µ can be written ̟Ψµ + ωΨ̄µ + υµν−Ψ̄ν − εµη + ενχµν−
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Eqs. (34) and (35) determine respectively the action of Q and s on A, c, Ω and on the

fields on the right-hand-side of Eq. (34), by expansion in form degree.

Few degenerate component equations occur when solving Eqs. (34) and (35). They

are solved by introducing the fields χ̄I and η̄, the auxiliary fields HI , Tµ and the shadow

field µ. Notice that the auxiliary fields HI and Tµ, carry a total of 7 = 3 + 4 degrees

of freedom. The latter compensate the deficit between the number of off-shell gauge-

invariant degrees of freedom of fermions and bosons in the theory.

Eqs. (34) and (35) determine δSusy as

δSusyA =̟Ψ + ωΨ̄ + g(ε)η + g(JIε)χ
I + υIJ

I(Ψ̄)

δSusyΨ =−̟dAΦ − ω
(

dAL + T
)

+ iεF + g(JIε)H
I + g(ε)[Φ, Φ̄] − υI

(

dAhI + JI(T )
)

δSusyΦ =−ωη̄ + iεΨ − υI χ̄
I

δSusy Φ̄ =̟η

δSusyη =̟[Φ, Φ̄] − ω[Φ̄, L] + LεΦ̄ − υI [Φ̄, hI ]

δSusyχI =̟HI + ω[Φ̄, hI ] + LJIεΦ̄ − υI [Φ̄, L] + εI
JKυJ [Φ̄, hK ]

δSusyHI =̟[Φ, χI ] + ω
(

[L, χI ] − [η, hI ] − [Φ̄, χ̄I ]
)

− LJIεη − [Φ̄, iJIεΨ] + Lεχ
I

+υJ [hJ , χI ] + υI
(

[η, L] + [Φ̄, η̄]
)

− εI
JKυJ

(

[η, hK ] + [Φ̄, χ̄K ]
)

δSusyL =̟η̄ − ωη + iεΨ̄ − υIχ
I

δSusy η̄ =̟[Φ, L] + ω[Φ, Φ̄] + LεL + iεT + υI

(

HI + [hI , L]
)

δSusy Ψ̄ =̟T − ωdAΦ̄ − g(ε)[Φ̄, L] + g(JIε)[Φ̄, hI ] + υIJ
I(dAΦ̄)

δSusyT =̟[Φ, Ψ̄] + ω
(

−dAη − [Φ̄, Ψ] + [L, Ψ̄]
)

− g(ε)
(

[η, L] + [Φ̄, η̄]
)

+g(JIε)
(

[η, hI ] + [Φ̄, χ̄I ]
)

+ LεΨ̄ + υI

(

[hI , Ψ̄] + JI(dAη + [Φ̄, Ψ̄])
)

δSusyhI =̟χ̄I + ωχI − iJIεΨ̄ − υIη − εI
JKυJχK (37)

δSusy χ̄I =̟[Φ, hI ] + ω
(

[L, hI ] − HI
)

+ Lεh
I − iJIεT + υI [Φ, Φ̄] + υJ [hJ , hI ] + εI

JKυJHK

One can verify that, for Tµ = HI = 0, the transformation laws of δSusy in Eq. (37) are the

on-shell transformation laws of the twisted N = 4 supersymmetry. It is quite remarkable

that the supersymmetry transformations are the solution of the curvature equation (34)

and its Bianchi identity (35). As we will shortly sketch, these equations play a key role

in non-renormalization theorems.

6.2 Protected operators

Superconformal invariance implies that the so-called BPS local operators are protected

from renormalization and their anomalous dimensions vanish to all orders in perturbation
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theory [9]. In the N = 4 theory, these operators play an important role for the AdS/CFT

correspondence, since their non-renormalization properties allows to test the conjecture.

One wishes to prove that, without the assumption of the superconformal symmetry,

N = 4 supersymmetry implies that all 1/2 BPS primary operators, and thus all their

descendants, have zero anomalous dimension. We will sketch the proof of this statement

using only Ward identities associated to gauge and supersymmetry invariance. The 1/2

BPS primary operators are the gauge-invariant polynomials in the scalar fields of the

theory in traceless symmetric representations of the SO(5, 1) R-symmetry group.

In the gauge εµ = 0 the operator Q is nilpotent.5 The linear function of the scalar

fields Φ̂(φ) that characterizes the field dependent gauge transformations that appear in

the commutators of two supersymmetries, depends in this case on five parameters,

Φ̂(φ) = ̟2Φ + ̟ωL + ̟υIh
I + (ω2 + υIυ

I)Φ̄ (38)

The decomposition under the independent functions of the supersymmetric parame-

ters of the invariant polynomial P in Φ̂(φ) gives all the gauge invariant polynomials in

the scalar fields that belongs to traceless symmetric representations of SO(5, 1) [3]. Since

Q is nilpotent with the restricted set of parameters, the shadow number 2 component of

the curvature equation (34) is also a curvature equation

Qc + c2 = Φ̂(φ) (39)

By comparison with the Baulieu–Singer curvature equation in TQFT’s, one interprets c

as the component of the connexion of the space of gauge orbits along the fundamental

vector field generating supersymmetry and Φ̂(φ) as the component of its curvature along

the same fundamental vector field.6 The Chern–Simons formula then implies that any

given invariant polynomial P(Φ̂) can be written as a Q-exact term

P
(

Φ̂(φ)
)

= Q ∆
(

c, Φ̂(φ)
)

(40)

5Remember that the supersymmetry parameters appearing in the differential Q can be understood

in quantum field theory as gauge parameters of the Q-invariant gauge-fixing action.
6By this we mean the following. Given ω as the connection of the fiber bundle defined as the direct

sum of the space of irreducible connexions and the space of matter fields of the theory, on which the

group of pointed gauge transformations acts freely. Define Φ as the corresponding curvature s ω + ω2.

The supersymmetry transformations can be seen as generated by an anticommuting fundamental vector

field v, such that Q = Lv ≡ [Iv, s]. With the reduced set of parameters, the vector field v commutes

with itself. Then one has

LvIvω + (Ivω)2 =
1

2
Iv

2
(

s ω + ω2
)

+
1

2
[Lv, Iv]ω =

1

2
Iv

2Φ

13



where the Chern-Simons form ∆ is given by

∆
(

c, ω(ϕ)
)

≡

∫ 1

0

dtP
(

c | tω(ϕ) + (t2 − t)c2
)

(41)

Any given polynomial in the scalar fields belonging to a traceless symmetric represen-

tation of SO(5, 1) has a canonical dimension which is strictly lower than that of all other

operators in the same representation, made out of other fields. Thus, by power counting,

the polynomials in the scalar fields can only mix between themselves under renormaliza-

tion. Thus, if C is the Callan–Simanzik operator, for any homogeneous polynomial PA

of degree n in the traceless symmetric representation, renormalization can only produce

anomalous dimensions that satisfy

C
[

PA

(

Φ̂(φ)
)

· Γ
]

=
∑

B

γA
B
[

PB

(

Φ̂(φ)
)

· Γ
]

(42)

In this notation, given a local operator O,
[

O · Γ
]

means its insertion in the generat-

ing functional of one-particle irreducible Green functions Γ. Then, the Slavnov–Taylor

identities imply

C
[

∆A

(

c, Φ̂(φ)
)

· Γ
]

=
∑

B

γA
B
[

∆B

(

c, Φ̂(φ)
)

· Γ
]

+ · · · (43)

where the dots stand for possible S(Q)|Γ-invariant corrections. However, in the shadow-

Landau gauge (i.e., the gauge (13) with α = 0), ∆A(c, Φ̂(φ)) cannot appear in the

right-hand-side because such term would break the so-called ghost Ward identities [3].

One thus gets the result that γA
B = 0

C
[

PA

(

Φ̂(φ)
)

· Γ
]

= 0 (44)

Upon decomposition of this equation in function of the five independent supersymmetry

parameters, one then gets the finiteness proof for each invariant polynomial P(φ) ≡

P(φi, φj, φk, · · · ) in the traceless symmetric representation of the R-symmetry group,

namely

C
[

P(φ) · Γ
]

= 0 (45)

Having proved that all 1/2 BPS primary operators have zero anomalous dimension,

the Q-symmetry implies that all the operators generated from them, by applying N = 4

super-Poincaré generators, have also vanishing anomalous dimensions. It follows that all

the operators of the 1/2 BPS multiplets are protected operators.
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It is worth considering as an example the simplest case of Tr Φ̂(φ)2. One has

QTr
(

Φ̂(φ)c −
1

3
c3

)

= Tr Φ̂(φ)2 s QTr
(

Φ̂(φ)c −
1

3
c3

)

= 0

s Tr
(

Φ̂(φ)c −
1

3
c3

)

= Tr

(

µ
(

Φ̂(φ) − c2
)

− [Ω, Φ̂(φ)]c

)

(46)

These constraints imply that ∆(0,3)

[ 3
2
]

is proportional to Tr
(

Φ̂(φ)c − 1
3
c3

)

. Thus the three

insertions that we have introduced can only be multiplicatively renormalized, with the

same anomalous dimension. Moreover, the ghost Ward identities forbid the introduction

of any invariant counterterm depending on the shadow field c, if it is not trough a

derivative term dc or particular combinations of c and the other fields that do not appear

in the insertion Tr
(

Φ̂(φ)c − 1
3
c3

)

. This gives the result that

C
[

Tr Φ̂(φ)2 · Γ
]

= 0 (47)

Finally, by decomposition of the gauge-invariant operators upon independent com-

binations of the parameters, we obtain that all the 20 operators that constitute the

traceless-symmetric tensor representation of rank two in SO(5, 1) are protected opera-

tors

Tr
(

Φ2
)

, Tr
(

ΦL
)

, Tr
(

ΦΦ̄ +
1

2
L2

)

, Tr
(

Φ̄L
)

, Tr
(

Φ̄2
)

,

Tr
(

ΦhI

)

, Tr
(

LhI

)

, Tr
(

Φ̄hI

)

, Tr
(

δIJΦΦ̄ +
1

2
hIhJ

)

(48)

This constitutes the simplest application of Eq. (45), for P(φ) ≡ Tr
(

φiφj −
1
6
δi
jφkφ

k
)

.

6.3 Cancellation of the β function form descent equations

To show that the coupling constant of the N = 4 theory is not rescaled by renormal-

ization, the key point is proving that the action S =
∫

L0
4 has vanishing anomalous

dimension, in the sense that it cannot be renormalized by anything but a mixing with

a BRST-exact counterterms. We will restrict here to the proof of this lemma, that is

proving the Callan–Symanzik equation

C
[

∫

L0
4 · Γ

]

= S(s)|Γ

[

Ψ̂(1) · Γ
]

(49)

where Ψ̂(1) is a functional of ghost number -1 and shadow number 0. (See [3] for a

complete discussion.)
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To prove (49), we will use the fact that descent equations imply that the lagrangian

density is uniquely linked to a combination of protected operators (48), with coefficients

that are fixed functions of the supersymmetric parameters.

As shown in [3], the reduced supersymmetry with the six generator Q, Q̄ and Q̄µ is

sufficient to completely determine the classical action. For simplicity, we will thus restrict

δSusy to these generators in this section (υI = 0). Because L0
4 and Ch0

4 = Tr(FF ) are

supersymmetric invariant only modulo a boundary-term, the algebraic Poincaré lemma

predicts series of cocycles, which are linked to L0
4 and Ch0

4 by descent equations, as

follows:

δSusyL0
4 + dL1

3 = 0

δSusyL1
3 + dL2

2 = ̟iεL
0
4

δSusyL2
2 + dL3

1 = ̟iεL
1
3

δSusyL3
1 + dL4

0 = ̟iεL
2
2

δSusyL4
0 = ̟iεL

3
1

δSusyCh0
4 + dCh1

3 = 0

δSusyCh1
3 + dCh2

2 = ̟iεCh0
4

δSusyCh2
2 + dCh3

1 = ̟iεCh1
3

δSusyCh3
1 + dCh4

0 = ̟iεCh2
2

δSusyCh4
0 = ̟iεCh3

1

(50)

Using the grading properties of the shadow number and the form degree, we conveniently

define

L ≡ L0
4 + L1

3 + L2
2 + L3

1 + L4
0

Ch ≡ Ch0
4 + Ch1

3 + Ch2
2 + Ch3

1 + Ch4
0 (51)

The descent equations can then be written in a unified way

(d + δSusy − ̟iε)L = 0 (d + δSusy − ̟iε)Ch = 0 (52)

Note that on gauge-invariant polynomials in the physical fields, δSusy can be identified to

s +Q, in such way that the differential (d+δSusy−̟iε) is nilpotent on them. Since L0
4 and

Ch0
4 are the unique solutions of the first equation in (50), one obtains that L and Ch are

the only non-trivial solutions of the descent equations, that is, the only ones that cannot

be written as (d + δSusy − ̟iε) Ξ for a non trivial element of the s cohomology Ξ. The

expression of the cocycles Chs
4−s can be simply obtained using the extended curvature

(34) since the extended second Chern class

Ch =
1

2
Tr

(

F + ̟Ψ + ωΨ̄ + g(ε)η + g(JIε)χ
I + ̟2Φ + ̟ωL + (ω2 + |ε|2)Φ̄

)2

(53)

is (d + δSusy − ̟iε) invariant by definition.
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As for determining the explicit form of Ls
4−s for s > 1, we found no other way than

doing a brute force computation. In this way, one gets [3]

L4
0 =

1

2
Tr

(

(

̟2Φ + ̟ωL + ω2Φ̄
)2

+ ̟2|ε|2Φ̄2

)

(54)

The last cocycle L4
0 is a linear combination of the protected operators (48) and thus,

its anomalous dimension is zero. This permits to prove that its ascendant L0
4 can only

be renormalized by d-exact or S(s)|Σ-exact counterterms.

7 Conclusion

In the formalism that we have presented, the set of fields of a supersymmetric theory has

been extended. With the introduction of shadow fields, one can express supersymmetry

under the form of a nilpotent differential operator.

This clarifies many questions that arise when one builds the quantum field theory

of a supersymmetric Yang–Mills theory, in particular for defining observables and study

their renormalization. For instance, supersymmetric observables can be defined within

the standard point of view of the cohomology of the BRST symmetry. In this framework,

we have been able to define unambiguously the computation at all order in perturbation

theory of all correlation functions, including insertions of gauge invariant local operators.

The Slavnov–Taylor identities permit one to compute the non-invariant finite countert-

erms to maintain supersymmetry and gauge invariance of observables, independently of

the choice of the regularization scheme.

By twisting the spinors, one can find subalgebra of supersymmetry with no equa-

tions of motions in the closure relations. This permits to simplify the proofs of various

renormalization theorems for the N = 4 super-Yang–Mills theory.
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