102 research outputs found

    Efficacy of Two Common Methods of Application of Residual Insecticide for Controlling the Asian Tiger Mosquito, Aedes albopictus (Skuse), in Urban Areas

    Get PDF
    After its first introduction in the 1980's the Asian tiger mosquito, Aedes albopictus (Skuse), has spread throughout Southern Europe. Ae. albopictus is considered an epidemiologically important vector for the transmission of many viral pathogens such as the yellow fever virus, dengue fever and Chikungunya fever, as well as several filarial nematodes such as Dirofilaria immitis or D. repens. It is therefore crucial to develop measures to reduce the risks of disease transmission by controlling the vector populations. The aim of the study was to compare the efficacy of two application techniques (mist vs. stretcher sprayer) and two insecticides (Etox based on the nonester pyrethroid Etofenprox vs. Microsin based on the pyrethroid type II Cypermetrin) in controlling adult tiger mosquito populations in highly populated areas. To test the effect of the two treatments pre- and post-treatment human landing rate counts were conducted for two years. After one day from the treatment we observed a 100% population decrease in mosquito abundance with both application methods and both insecticides. However, seven and 14 days after the application the stretcher sprayer showed larger population reductions than the mist sprayer. No effect of insecticide type after one day and 14 days was found, while Etox caused slightly higher population reduction than Microsin after seven days. Emergency measures to locally reduce the vector populations should adopt adulticide treatments using stretcher sprayers. However, more research is still needed to evaluate the potential negative effects of adulticide applications on non-target organisms

    Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development.

    Get PDF
    The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (g c) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of g c of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with g c were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of g c in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of g c and have the potential to help breeders more effectively develop drought-tolerant maize for target environments

    Quantum ESPRESSO: One Further Step toward the Exascale

    Get PDF
    We review the status of the Quantum ESPRESSO software suite for electronic-structure calculations based on plane waves, pseudopotentials, and density-functional theory. We highlight the recent developments in the porting to GPUs of the main codes, using an approach based on OpenACC and CUDA Fortran offloading. We describe, in particular, the results achieved on linear-response codes, which are one of the distinctive features of the Quantum ESPRESSO suite. We also present extensive performance benchmarks on different GPU-accelerated architectures for the main codes of the suite

    Carbonate Anion Radical Generated by the Peroxidase Activity of Copper-Zinc Superoxide Dismutase:Scavenging of Radical and Protection of Enzyme by Hypotaurine and Cysteine Sulfinic Acid

    Get PDF
    Copper-zinc superoxide dismutase (SOD) is considered one of the most important mammalian antioxidant defenses and plays a relevant role due to its main function in catalyzing the dismutation of superoxide anion to oxygen and hydrogen peroxide. However, interaction between SOD and H2O2 produced a strong copper-bound oxidant (Cu(II)●OH) that seems able to contrast the self-inactivation of the enzyme or oxidize other molecules through its peroxidase activity. The bicarbonate presence enhances the peroxidase activity and produces the carbonate anion radical (CO3●–). CO3●– is a freely diffusible reactive species capable of oxidizing several molecules that are unwieldy to access into the reactive site of the enzyme. Cu(II)●OH oxidizes bicarbonate to the CO3●–, which spreads out of the binding site and oxidizes hypotaurine and cysteine sulfinic acid to the respective sulfonates through an efficient reaction. These findings suggest a defense role for sulfinates against the damage caused by CO3●–. The effect of hypotaurine and cysteine sulfinic acid on the CO3●–-mediated oxidation of the peroxidase probe ABTS to ABTS cation radical (ABTS●+) has been studied. Both sulfinates are able to inhibit the oxidation of ABTS mediated by CO3●–. The effect of hypotaurine and cysteine sulfinic acid against SOD inactivation by H2O2 (~42% protection of enzyme activity) has also been investigated. Interestingly, hypotaurine and cysteine sulfinic acid partially avoid the H2O2-mediated SOD inactivation, suggesting that the two sulfinates may have access to the SOD reactive site and preserve it by reacting with the copper-bound oxidant. In this way hypotaurine and cysteine sulfinic acid not only intercept CO3●–which could move out from the reactive site and cause oxidative damage, but also prevents the inactivation of SOD

    Continuous pulse advances in the negative ion source NIO1

    Full text link
    Consorzio RFX and INFN-LNL have designed, built and operated the compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) with the aim of studying the production and acceleration of H- ions. In particular, NIO1 was designed to keep plasma generation and beam extraction continuously active for several hours. Since 2020 the production of negative ions at the plasma grid (the first grid of the acceleration system) has been enhanced by a Cs layer, deposited though active Cs evaporation in the source volume. For the negative ion sources applied to fusion neutral beam injectors, it is essential to keep the beam current and the fraction of co-extracted electrons stable for at least 1 h, against the consequences of Cs sputtering and redistribution operated by the plasma. The paper presents the latest results of the NIO1 source, in terms of caesiation process and beam performances during continuous (6{\div}7 h) plasma pulses. Due to the small dimensions of the NIO1 source (20 x (diam.)10 cm), the Cs density in the volume is high (10^15 \div 10^16 m^-3) and dominated by plasma-wall interaction. The maximum beam current density and minimum fraction of co-extracted electrons were respectively about 30 A/m^2 and 2. Similarly to what done in other negative ion sources, the plasma grid temperature in NIO1 was raised for the first time, up to 80 {\deg}C, although this led to a minimal improvement of the beam current and to an increase of the co-extracted electron current.Comment: 11 pages, 7 figures. Contributed paper for the 8th International symposium on Negative Ions, Beams and Sources - NIBS'22. Revision 1 of the preprint under evaluation at Journal of Instrumentation (JINST

    Storability of 'SCS417 Monalisa' apple as affected by harvest maturity, 1-methylcyclopropene treatment, and storage atmosphere.

    Get PDF
    The objective of this work was to determine the storability of 'SCS417 Monalisa' apple fruit in response to harvest maturity, 1-methylcyclopropene (1-MCP) treatment, and storage atmospheres. Fruit quality was evaluated after two, four, six, and eight months plus one day or seven days in shelf life at 22°C. The controlled atmosphere (CA) and 1-MCP (1.0 ?L L-1) treatments reduce fruit ethylene production and respiration, prevent rapid softening, and inhibit the incidence of scald-like symptoms, flesh browning, cracking, and fungal decay, in comparison with air storage . The combination of 1-MCP and CA provides additive benefits in firmness retention and in the reduction of the incidence of physiological disorders. CA and/or 1-MCP increase the risk of fruit developing wrinkly skin disorder. The loss of flesh firmness and acidity and the development of all physiological disorders and decay are higher in late-harvested fruit. The storage life of 'SCS417 Monalisa' apple is about two months in cold air and from six to eight months in cold CA, considering the time necessary to reach a flesh firmness of 53 N. The limiting factor for the long-term storage of 'SCS417 Monalisa' apple fruit under CA without 1-MCP is the development of physiological disorders and fungal decay

    The Interaction of Hypotaurine and Other Sulfinates with Reactive Oxygen and Nitrogen Species:A Survey of Reaction Mechanisms

    Get PDF
    Considerable strides have been made in understanding the oxidative mechanisms involved in the final steps of the cysteine pathway leading to taurine. The oxidation of sulfinates, hypotaurine and cysteine sulfinic acid, to the respective sulfonates, taurine and cysteic acid, has never been associated with any specific enzyme. Conversely, there is strong evidence that in vivo formation of taurine and cysteic acid is the result of sulfinate interaction with a variety of biologically relevant oxidants. In the last decade, many experiments have been performed to understand whether peroxynitrite, nitrogen dioxide and carbonate radical anion could be included in the biologically relevant reactive species capable of oxidizing sulfinates. Thanks to this work, it has been possible to highlight two possible reaction mechanisms (direct and indirect reaction) of sulfinates with reactive oxygen and nitrogen species.The sulfinates oxidation, mediated by peroxynitrite, is an example of both reaction mechanisms: through a two-electron-direct-reaction with peroxynitrite or through a one-electron-indirect-transfer reaction. In the indirect mechanism, the peroxynitrite homolysis releases hydroxyl and nitrogen dioxide radical and in addition the degradation of short-lived adduct formed by peroxynitrite and CO2 can generate carbonate radical anion. The reaction of hypotaurine and cysteine sulfinic acid with peroxynitrite-derived radicals is accompanied by extensive oxygen uptake with the generation of transient intermediates, which can begin a reaction by an oxygen-dependent mechanism with the sulfonates, taurine, and cysteic acid as final products. Due to pulse radiolysis studies, it has been shown that transient sulfonyl radicals (RSO2(•)) have been produced during the oxidation of both sulfinates by one-electron transfer reaction.The purpose is to analyze all the aspects of the reactive mechanism in the sulfinic group oxidation of hypotaurine and cysteine sulfinic acid through the results obtained from our laboratory in recent years

    Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping

    Get PDF
    Immunophenotypic characterization of B-cell chronic lymphoproliferative disorders (B-CLPD) is becoming increasingly complex due to usage of progressively larger panels of reagents and a high number of World Health Organization (WHO) entities. Typically, data analysis is performed separately for each stained aliquot of a sample; subsequently, an expert interprets the overall immunophenotypic profile (IP) of neoplastic B-cells and assigns it to specific diagnostic categories. We constructed a principal component analysis (PCA)-based tool to guide immunophenotypic classification of B-CLPD. Three reference groups of immunophenotypic data files—B-cell chronic lymphocytic leukemias (B-CLL; n=10), mantle cell (MCL; n=10) and follicular lymphomas (FL; n=10)—were built. Subsequently, each of the 175 cases studied was evaluated and assigned to either one of the three reference groups or to none of them (other B-CLPD). Most cases (89%) were correctly assigned to their corresponding WHO diagnostic group with overall positive and negative predictive values of 89 and 96%, respectively. The efficiency of the PCA-based approach was particularly high among typical B-CLL, MCL and FL vs other B-CLPD cases. In summary, PCA-guided immunophenotypic classification of B-CLPD is a promising tool for standardized interpretation of tumor IP, their classification into well-defined entities and comprehensive evaluation of antibody panels

    Alcohol reversibly disrupts TNF-α/TACE interactions in the cell membrane

    Get PDF
    BACKGROUND: Alcohol abuse has long been known to adversely affect innate and adaptive immune responses and pre-dispose to infections. One cellular mechanism responsible for this effect is alcohol-induced suppression of TNF-α (TNF) by mononuclear phagocytes. We have previously shown that alcohol in part inhibits TNF-α processing by TNF converting enzyme (TACE) in human monocytes. We hypothesized that the chain length of the alcohol is critical for post-transcriptional suppression of TNF secretion. METHODS: Due to the complex transcriptional and post-transcriptional regulation of TNF in macrophages, to specifically study TNF processing at the cell membrane we performed transient transfections of A549 cells with the TNF cDNA driven by the heterologous CMV promoter. TNF/TACE interactions at the cell surface were assessed using fluorescent resonance energy transfer (FRET) microscopy. RESULTS: The single carbon alcohol, methanol suppressed neither TNF secretion nor FRET efficiency between TNF and TACE. However, 2, 3, and 4 carbon alcohols were potent suppressors of TNF processing and FRET efficiency. The effect of ethanol, a 2-carbon alcohol was reversible. CONCLUSION: These data show that inhibition of TNF-α processing by acute ethanol is a direct affect of ethanol on the cell membrane and is reversible upon cessation or metabolism
    corecore