103 research outputs found

    Process controls introduction of selected impurities into semiconductor wafers

    Get PDF
    Modified three-step process controls the concentration of lithium diffused as a dopant into the base region of a diffused n-on-p silicon solar cell wafer. Part of the surface layer of the base region of the p-type silicon containing the diffused dopant is removed, prior to redistributing the remaining portion of the dopant into the bulk of the wafer

    Ecological Niche Modeling of Potential West Nile Virus Vector Mosquito Species in Iowa

    Get PDF
    Ecological niche modeling (ENM) algorithms, Maximum Entropy Species Distribution Modeling (Maxent) and Genetic Algorithm for Rule-set Prediction (GARP), were used to develop models in Iowa for three species of mosquito — two significant, extant West Nile virus (WNV) vectors (Culex pipiens L and Culex tarsalis Coquillett (Diptera: Culicidae)), and the nuisance mosquito, Aedes vexans Meigen (Diptera: Culicidae), a potential WNV bridge vector. Occurrence data for the three mosquito species from a state-wide arbovirus surveillance program were used in combination with climatic and landscape layers. Maxent successfully created more appropriate niche models with greater accuracy than GARP. The three Maxent species' models were combined and the average values were statistically compared to human WNV incidence at the census block group level. The results showed that the Maxent-modeled species' niches averaged together were a useful indicator of WNV human incidence in the state of Iowa. This simple method for creating probability distribution maps proved useful for understanding WNV dynamics and could be applied to the study of other vector-borne diseases

    Plant essential oils synergize various pyrethroid insecticides and antagonize malathion in Aedes aegypti

    Get PDF
    Pyrethroid resistance is a significant threat to agricultural, urban and public health pest control activities. Because economic incentives for the production of novel active ingredients for the control of public health pests are lacking, this field is particularly affected by the potential failure of pyrethroid‐based insecticides brought about by increasing pyrethroid resistance. As a result, innovative approaches are desperately needed to overcome insecticide resistance, particularly in mosquitoes that transmit deadly and debilitating pathogens. Numerous studies have demonstrated the potential of plant essential oils to enhance the efficacy of pyrethroids. The toxicity of pyrethroids combined with plant oils is significantly greater than the baseline toxicity of either oils or pyrethroids applied alone, which suggests there are synergistic interactions between components of these mixtures. The present study examined the potential of eight plant essential oils applied in one of two concentrations (1% and 5%) to enhance the toxicity of various pyrethroids (permethrin, natural pyrethrins, deltamethrin and β‐cyfluthrin). The various plant essential oils enhanced the pyrethroids to differing degrees. The levels of enhancement provided by combinations of plant essential oils and pyrethroids in comparison with pyrethroids alone were calculated and synergistic outcomes characterized. Numerous plant essential oils significantly synergized a variety of pyrethroids; type I pyrethroids were synergized to a greater degree than type II pyrethroids. Eight plant essential oils significantly enhanced 24‐h mortality rates provided by permethrin and six plant essential oils enhanced 24‐h mortality rates obtained with natural pyrethrins. By contrast, only three plant essential plants significantly enhanced the toxicity of deltamethrin and β‐cyfluthrin. Of the plant essential oils that enhanced the toxicity of these pyrethroids, some produced varying levels of synergism and antagonism. Geranium, patchouli and Texas cedarwood oils produced the highest levels of synergism, displaying co‐toxicity factors of \u3e 100 in some combinations. To assess the levels of enhancement and synergism of other classes of insecticide, malathion was also applied in combination with the plant oils. Significant antagonism was provided by a majority of the plant essential oils applied in combination with this insecticide, which suggests that plant essential oils may act to inhibit the oxidative activation processes within exposed adult mosquitoes

    Biodistribution of degradable polyanhydride particles in Aedes aegypti tissues

    Get PDF
    Insecticide resistance poses a significant threat to the control of arthropods that transmit disease agents. Nanoparticle carriers offer exciting opportunities to expand the armamentarium of insecticides available for public health and other pests. Most chemical insecticides are delivered by contact or feeding, and from there must penetrate various biological membranes to reach target organs and kill the pest organism. Nanoparticles have been shown to improve bioactive compound navigation of such barriers in vertebrates, but have not been well-explored in arthropods. In this study, we explored the potential of polyanhydride micro- and nanoparticles (250 nm– 3 μm), labeled with rhodamine B to associate with and/or transit across insect biological barriers, including the cuticle, epithelium, midgut and ovaries, in female Ae. aeygpti mosquitoes. Mosquitoes were exposed using conditions to mimic surface contact with a residual spray or paint, topical exposure to mimic contact with aerosolized insecticide, or per os in a sugar meal. In surface contact experiments, microparticles were sometimes observed in association with the exterior of the insect cuticle. Nanoparticles were more uniformly distributed across exterior tissues and present at higher concentrations. Furthermore, by surface contact, topical exposure, or per os, particles were detected in internal organs. In every experiment, amphiphilic polyanhydride nanoparticles associated with internal tissues to a higher degree than hydrophobic nanoparticles. In vitro, nanoparticles associated with Aedes aegypti Aag2 cells within two hours of exposure, and particles were evident in the cytoplasm. Further studies demonstrated that particle uptake is dependent on caveolae-mediated endocytosis. The propensity of these nanoparticles to cross biological barriers including the cuticle, to localize in target tissue sites of interest, and to reach the cytoplasm of cells, provides great promise for targeted delivery of insecticidal candidates that cannot otherwise reach these cellular and subcellular locations

    Determination of the angle of attack on a research wind turbine rotor blade using surface pressure measurements

    Get PDF
    In this paper, a method to determine the angle of attack on a wind turbine rotor blade using a chordwise pressure distribution measurement was applied. The approach used a reduced number of pressure tap data located close to the blade leading edge. The results were compared with the measurements from three external probes mounted on the blade at different radial positions and with analytical calculations. Both experimental approaches used in this study are based on the 2-D flow assumption; the pressure tap method is an application of the thin airfoil theory, while the probe method applies geometrical and induction corrections to the measurement data. The experiments were conducted in the wind tunnel at the Hermann Föttinger Institut of the Technische Universität Berlin. The research turbine is a three-bladed upwind horizontal axis wind turbine model with a rotor diameter of 3 m. The measurements were carried out at rated conditions with a tip speed ratio of 4.35 and different yaw and pitch angles were tested in order to compare the approaches over a wide range of conditions. Results show that the pressure tap method is suitable and provides a similar angle of attack to the external probe measurements as well as the analytical calculations. This is a significant step for the experimental determination of the local angle of attack, as it eliminates the need for external probes, which affect the flow over the blade and require additional calibration

    REVISIÓN TAXONÓMICA DEL GÉNERO Timulla ASHMEAD, 1899 DE PANAMÁ (HYMENOPTERA: MUTILLIDAE)

    Get PDF
    The males of Timulla chrysea Mickel, 1938, Timulla continua Mickel, 1938, and Timulla segesta Mickel, 1938, and the female of Timulla tumidula (Cameron, 1894) are described and illustrated. Timulla chrysea and T. tumidula are reported for first time from Panama. The following synonyms are presented: Timulla orthona (Cameron, 1894), male, is a junior synonym of Timulla lilea (Cameron, 1894), female; Timulla talus (Cameron, 1894), male, is a junior synonym of Timulla subrobusta (Cameron, 1894), female. Observations on mating behavior for Timulla runata Mickel and Timulla cordillera Mickel, 1938 are described. Flight seasonality of Timulla labdace Mickel, 1938 is discussed. Keys and a checklist for the 16 species of Timulla from Panama are presented.Los machos de Timulla chrysea Mickel, 1938, Timulla continua Mickel, 1938 y Timulla segesta Mickel, 1938 y la hembra de Timulla tumidula (Cameron, 1894) son descritos e ilustrados. Se registran por primera vez para Panamá a Timulla chrysea y T. tumidula. Las siguientes sinonimias son presentadas: Timulla orthona (Cameron, 1894), macho, es junior sinónimo de Timulla lilea (Cameron, 1894), hembra; Timulla talus (Cameron, 1894), macho, es junior sinónimo de Timulla subrobusta (Cameron, 1894), hembra. Observaciones sobre el comportamiento de apareamiento para Timulla runata Mickel y T. cordillera son descritos. Estacionalidad de vuelo en Timulla labdace Mickel, 1938 es discutido. Se incluye una clave y listado para las 16 species of Timulla presentes en Panamá

    Aerodynamic effects of Gurney flaps on the rotor blades of a research wind turbine

    Get PDF
    This paper investigates the aerodynamic impact of Gurney flaps on a research wind turbine of the Hermann-Föttinger Institute at the Technische Universität Berlin. The rotor radius is 1.5 m, and the blade configurations consist of the clean and the tripped baseline cases, emulating the effects of forced leading-edge transition. The wind tunnel experiments include three operation points based on tip speed ratios of 3.0, 4.3, and 5.6, reaching Reynolds numbers of approximately 2.5×105. The measurements are taken by means of three different methods: Ultrasonic anemometry in the wake, surface pressure taps in the midspan blade region, and strain gauges at the blade root. The retrofit applications consist of two Gurney flap heights of 0.5% and 1.0% in relation to the chord length, which are implemented perpendicular to the pressure side at the trailing edge. As a result, the Gurney flap configurations lead to performance improvements in terms of the axial wake velocities, the angles of attack and the lift coefficients. The enhancement of the root bending moments implies an increase in both the rotor torque and the thrust. Furthermore, the aerodynamic impact appears to be more pronounced in the tripped case compared to the clean case. Gurney flaps are considered a passive flow-control device worth investigating for the use on horizontal-axis wind turbines
    corecore