1,833 research outputs found
How augmented reality increases engagement through its impact on risk and the decision process
Augmented reality (AR) overcomes one of the main limitations of e-commerce, such as the prepurchase trial. The consumer can virtually see how a product is integrated into the real world through this technology. Therefore, AR may reduce the perceived risk of buying a product online. Despite existing research, the impact of AR on the consumer decision process needs to be further explored. Consequently, this research aims to understand the impact of AR on the perception of risk and the purchase decision process, considering decision comfort and decision confidence. Through a between-subjects experiment, the results show that AR reduces the risk of online shopping. However, it has no direct effect on the decision process. Reducing risk and the comfort it brings generates decision confidence and satisfaction with the shopping experience. This satisfaction will generate engagement toward the online shop platform. The research highlights the process through which AR impacts the decision-making process. The implications for AR marketing theory and managerial implications in the age of the metaverse are discussed
Personality, Foraging and Fitness Consequences in a Long Lived Seabird
While personality differences in animals are defined as consistent behavioural variation between individuals, the widely studied field of foraging specialisation in marine vertebrates has rarely been addressed within this framework. However there is much overlap between the two fields, both aiming to measure the causes and consequences of consistent individual behaviour. Here for the first time we use both a classic measure of personality, the response to a novel object, and an estimate of foraging strategy, derived from GPS data, to examine individual personality differences in black browed albatross and their consequences for fitness. First, we examine the repeatability of personality scores and link these to variation in foraging habitat. Bolder individuals forage nearer the colony, in shallower regions, whereas shyer birds travel further from the colony, and fed in deeper oceanic waters. Interestingly, neither personality score predicted a bird's overlap with fisheries. Second, we show that both personality scores are correlated with fitness consequences, dependent on sex and year quality. Our data suggest that shyer males and bolder females have higher fitness, but the strength of this relationship depends on year quality. Females who forage further from the colony have higher breeding success in poor quality years, whereas males foraging close to the colony always have higher fitness. Together these results highlight the potential importance of personality variation in seabirds and that the fitness consequences of boldness and foraging strategy may be highly sex dependent
Integrated Process of Arabinose Biopurification and Xylitol Fermentation Based on the Diverse Action of Candida boidinii
Hemicellulosic hydrolysates of agro-residues are promising raw materials for xylitol and arabinose production through biotechnological methods.
Two-step acidic fractionation of corn fibre was developed to produce a glucose- and arabinose-rich hydrolysate and a xylose-rich hydrolysate. An integrated process of arabinose biopurification on the glucose- and arabinose-rich hydrolysate and xylitol fermentation on the xylose-rich hydrolysate using Candida boidinii NCAIM Y.01308 was introduced, in which cell mass produced in arabinose biopurification was used as inoculum in the xylitol fermentation. Aerobic biopurification resulted in an arabinose solution containing 9.2 g Lâ1 of arabinose with a purity of 90 %, based on total sugars. Xylitol fermentation under microaerobic conditions resulted in a xylitol yield of 53 % of theoretical and a xylitol concentration of 10.4 g Lâ1 in three days.
Hence, an integrated biorefinery process of hemicellulosic hydrolysates was developed based on the diverse action of C. boidinii to purify arabinose and produce xylitol
Comparative analysis on the structural features of the 5' flanking region of Îș-casein genes from six different species
Îș-casein plays an essential role in the formation, stabilisation and aggregation of milk micelles. Control of Îș-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. We determined the 5'-flanking sequences for the murine, rabbit and human Îș-casein genes and compared them to the published ruminant sequences. The most conserved region was not the proximal promoter region but an approximately 400 bp long region centred 800 bp upstream of the TATA box. This region contained two highly conserved MGF/STAT5 sites with common spacing relative to each other. In this region, six conserved short stretches of similarity were also found which did not correspond to known transcription factor consensus sites. On the contrary to ruminant and human 5' regulatory sequences, the rabbit and murine 5'-flanking regions did not harbour any kind of repetitive elements. We generated a phylogenetic tree of the six species based on multiple alignment of the Îș-casein sequences. This study identified conserved candidate transcriptional regulatory elements within the Îș-casein gene promoter
Personality, Foraging and Fitness Consequences in a Long Lived Seabird
While personality differences in animals are defined as consistent behavioural variation between individuals, the widely studied field of foraging specialisation in marine vertebrates has rarely been addressed within this framework. However there is much overlap between the two fields, both aiming to measure the causes and consequences of consistent individual behaviour. Here for the first time we use both a classic measure of personality, the response to a novel object, and an estimate of foraging strategy, derived from GPS data, to examine individual personality differences in black browed albatross and their consequences for fitness. First, we examine the repeatability of personality scores and link these to variation in foraging habitat. Bolder individuals forage nearer the colony, in shallower regions, whereas shyer birds travel further from the colony, and fed in deeper oceanic waters. Interestingly, neither personality score predicted a bird's overlap with fisheries. Second, we show that both personality scores are correlated with fitness consequences, dependent on sex and year quality. Our data suggest that shyer males and bolder females have higher fitness, but the strength of this relationship depends on year quality. Females who forage further from the colony have higher breeding success in poor quality years, whereas males foraging close to the colony always have higher fitness. Together these results highlight the potential importance of personality variation in seabirds and that the fitness consequences of boldness and foraging strategy may be highly sex dependent
Using Bi-Weekly Surveys to Portray Adolescent Partnership Dynamics: Lessons From a Mobile Diary Study.
Partnership formation is an important developmental task for adolescents, but cross-sectional and periodic longitudinal studies have lacked the measurement precision to portray partnership stability and flux and to capture the range of adolescent partnership experiences. This article assesses the promises and challenges of using bi-weekly mobile diaries administered over the course of a year to study adolescent partnership dynamics. Descriptive findings illustrate the potential of bi-weekly diaries for both capturing the longitudinal complexity and fluidity of adolescent partnerships as well as for reducing retrospection biases. Results also underscore several challenges, including those posed by missing data, and highlight several strategies for maximizing participant engagement and reliably tracing adolescent partnerships
Haptoglobin Polymorphism: A Novel Genetic Risk Factor for Celiac Disease Development and Its Clinical Manifestations
Background: Haptoglobin (Hp) α-chain alleles 1 and 2 account for 3 phenotypes that may influence the course of inflammatory diseases via biologically important differences in their antioxidant, scavenging, and immunomodulatory properties. Hp1-1 genotype results in the production of small dimeric, Hp2-1 linear, and Hp2-2 cyclic polymeric haptoglobin molecules. We investigated the haptoglobin polymorphism in patients with celiac disease and its possible association to the presenting symptoms.
Methods: We studied 712 unrelated, biopsy-proven Hungarian celiac patients (357 children, 355 adults; severe malabsorption 32.9%, minor gastrointestinal symptoms 22.8%, iron deficiency anemia 9.4%, dermatitis herpetiformis 15.6%, silent disease 7.2%, other 12.1%) and 384 healthy subjects. We determined haptoglobin phenotypes by gel electrophoresis and assigned corresponding genotypes.
Results: Hp2-1 was associated with a significant risk for celiac disease (P = 0.0006, odds ratio [OR] 1.54, 95% CI 1.20â1.98; prevalence 56.9% in patients vs 46.1% in controls). It was also overrepresented among patients with mild symptoms (69.2%) or silent disease (72.5%). Hp2-2 was less frequent in patients than in controls (P = 0.0023), but patients having this phenotype were at an increased risk for severe malabsorption (OR 2.21, 95% CI 1.60â3.07) and accounted for 45.3% of all malabsorption cases. Celiac and dermatitis herpetiformis patients showed similar haptoglobin phenotype distributions.
Conclusions: The haptoglobin polymorphism is associated with susceptibility to celiac disease and its clinical presentations. The predominant genotype in the celiac population was Hp2-1, but Hp2-2 predisposed to a more severe clinical course. The phenotype-dependent effect of haptoglobin may result from the moleculeâs structural and functional properties
Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems
A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates
Metal triflates for the production of aromatics from lignin
This work was funded by the European Union (Marie Curie ITN âSuBiCatâ PITN-GA-2013-607044, PJD, CWL, NJW, PCKL, KB, JGdeV) as well as EP/J018139/1, EP/K00445X/1 grants (NJW and PCJK) and an EPSRC Doctoral Prize Fellowship (CSL).The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields, under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy to handle metal triflates (M(OTf)x). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol, or methyl aromatics obtained by catalytic decarbonylation. Notably, when the former method was ultimately tested on lignin, especially Fe(OTf)3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield.PostprintPeer reviewe
Electrospun nanosystems based on PHBV and ZnO for ecological food packaging
The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0â1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (ÂżOOH) radicals as assessed using electron para-magnetic resonance (EPR) spectroscopy coupled with a spin trapping method. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
- âŠ