112 research outputs found

    Développement de la technique de vélocimétrie par marquage moléculaire pour l'étude expérimentale des micro-écoulements gazeux

    Get PDF
    Ce travail de thÚse porte sur le développement de la technique de Vélocimétrie par Marquage Moléculaire (Molecular Tagging Velocimetry - MTV) pour l étude expérimentale des micro-écoulements gazeux internes. Les micro-écoulements gazeux sont des écoulements raréfiés, caractérisés par un nombre de Knudsen non négligeable. L analyse de la littérature montre un besoin crucial de données expérimentales de grandeurs locales relatives aux micro-écoulements gazeux. Ces données permettraient une discussion pertinente de la précision et des limites d applicabilité des différents modÚles théoriques proposés dans la littérature pour l étude du régime de glissement, régime raréfié le plus souvent rencontré en microfluidique gazeuse. Dans cette optique, un banc d essais expérimental a été développé pour la mesure de champs de vitesses par MTV. La technique consiste à suivre des molécules traceuses d acétone introduites dans le gaz en écoulement et qui deviennent phosphorescentes lorsqu elles sont excitées par une source lumineuse UV. Les différents compromis pris en compte pour le développement de ce banc (choix du traceur et du matériau, conception du canal instrumenté, ), ainsi que les techniques d acquisition et de traitement de signal sont détaillés dans le manuscrit. L analyse expérimentale commence par une étude du signal de phosphorescence de l acétone. Ensuite, la technique de vélocimétrie par marquage moléculaire est validée par la mesure de champs de vitesses dans des écoulements laminaires confinés en régime non raréfié. Les résultats obtenus sont comparés à des profils de vitesse théoriques d un écoulement de Poiseuille à pression atmosphérique. Enfin, les premiers résultats obtenus à basse pression sont présentés et commentés. La détection du signal à un niveau de pression de 1kPa est encourageante et offre de nombreuses perspectives pour l exploration d écoulements en régime raréfiéThis thesis focuses on the development of Molecular Tagging Velocimetry (MTV) technique for the experimental analysis of internal microflows of gases. Gaseous microflows are rarefied flows characterized by a non-negligible Knudsen number. A literature review highlights a crucial need of experimental data on velocity fields within gaseous microflows. These data are required for a relevant discussion on the validity and limits of applicability of the different boundary conditions proposed in the slip flow, which is a regime often encountered in gaseous microsystems. An experimental setup has been designed for analyzing by MTV the velocity distribution in microchannels. The technique consists in detecting the displacement of acetone molecules, introduced as tracers in a gas flow; these molecules exhibit phosphorescence once excited by a UV light source. The various compromises taken into account for the setup design (choice of tracer, laser, channel material and design, camera and intensifier ), as well as the acquisition and processing techniques are detailed in the manuscript. The experimental analysis starts with a study of the acetone phosphorescence signal. Then, the MTV technique is validated by velocity field measurements in internal laminar flows through a rectangular minichannel in non-rarefied regime. The obtained results are successfully compared to the theoretical velocity profile of a Poiseuille flow. Finally, preliminary results obtained at lower pressures are presented and commented. The signal detection at a pressure level as low as 1 kPa is encouraging and draws various perspectives for the exploration of rarefied regimesTOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF

    Molecular tagging velocimetry for confined rarefied gas flows: Phosphorescence emission measurements at low pressure

    Get PDF
    International audienceRarefied gas flows have a central role in microfluidic devices for many applications in various scientific fields. Local thermodynamic non-equilibrium at the wall-gas interface produces macroscopic effects, one of which is a velocity slip between the gas flow and the solid surface. Local experimental data able to shed light on this physical phenomenon are very limited in the literature. The molecular tagging velocimetry (MTV) could be a suitable technique for measuring velocity fields in gas micro flows. However, the implementation of this technique in the case of confined and rarefied gas flows is a difficult task: the reduced number of molecules in the system, which induces high diffusion, and the low concentration of the molecular tracer both drastically reduce the intensity and the duration of the exploitable signal for carrying out the velocity measures. This work demonstrates that the application of the 1D-MTV by direct phosphorescence to gas flows in the slip flow regime and in a rectangular long channel is, actually, possible. New experimental data on phosphorescence emission of acetone and diacetyl vapors at low pressures are presented. An analysis of the optimal excitation wavelength is carried out to maximize the intensity and the lifetime of the tracer emission. The experimental results demonstrate that a little concentration of about 5-10 % of acetone vapor excited at 310 nm or of diacetyl vapor excited at 410 nm in a helium mixture at pressures on the order of 1 kPa provides an intense and durable luminescent signal. In a 1-mm deep channel, a gas flow characterized by these thermodynamic conditions is in the slip flow regime. Moreover, numerical experiments based on DSMC simulations are carried out to demonstrate that an accurate measurement of the velocity profile in a laminar pressure-driven flow is possible for the rarefied conditions of interest

    Miniaturization of fluorescence sensing in optofluidic devices

    Get PDF
    International audienceSuccessful development of a micro-total-analysis system (ÎŒTAS, lab-on-a-chip) is strictly related to the degree of miniaturization, integration, autonomy, sensitivity, selectivity, and repeatability of its detector. Fluorescence sensing is an optical detection method used for a large variety of biological and chemical assays, and its full integration within lab-on-a-chip devices remains a challenge. Important achievements were reported during the last few years, including improvements of previously reported methodologies, as well as new integration strategies. However, a universal paradigm remains elusive. This review considers achievements in the field of fluorescence sensing miniaturization, starting from off-chip approaches, representing miniaturized versions of their lab counter-parts, continuing gradually with strategies that aim to fully integrate fluorescence detection on-chip, and reporting the results around integration strategies based on optical-fiber-based designs,optical layer integrated designs, CMOS-based fluorescence sensing, and organic electronics. Further successful development in this field would enable the implementation of sensing networks in specific environments that, when coupled to Internet of-Things (IoT) and artificial intelligence (AI), could provide real-time data collection and, therefore, revolutionize fields like health, environmental, and industrial sensing

    Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis

    Get PDF
    The molecular tagging velocimetry (MTV) is a well-suited technique for velocity field measurement in gas flows. Typically, a line is tagged by a laser beam within the gas flow seeded with light emitting acetone molecules. Positions of the luminescent molecules are then observed at successive times and the velocity field is deduced from the analysis of the tagged line displacement and deformation. However, the displacement evolution is expected to be affected by molecular diffusion, when the gas is rarefied. Therefore, there is no direct and simple relationship between the velocity field and the measured displacement of the initial tagged line. This paper addresses the study of tracer molecules diffusion through a background gas flowing in a channel delimited by planar walls. Tracer and background species are supposed to be governed by a system of coupled Boltzmann equations, numerically solved by the direct simulation Monte Carlo (DSMC) method. Simulations confirm that the diffusion of tracer species becomes significant as the degree of rarefaction of the gas flow increases. It is shown that a simple advection–diffusion equation provides an accurate description of tracer molecules behavior, in spite of the non-equilibrium state of the background gas. A simple reconstruction algorithm based on the advection–diffusion equation has been developed to obtain the velocity profile from the displacement field. This reconstruction algorithm has been numerically tested on DSMC generated data. Results help estimating an upper bound on the flow rarefaction degree, above which MTV measurements might become problematic

    Optofluidic Formaldehyde Sensing: Towards On-Chip Integration

    Get PDF
    International audienceFormaldehyde (HCHO), a chemical compound used in the fabrication process of a broad range of household products, is present indoors as an airborne pollutant due to its high volatility caused by its low boiling point ( T=−19 °C). Miniaturization of analytical systems towards palm-held devices has the potential to provide more efficient and more sensitive tools for real-time monitoring of this hazardous air pollutant. This work presents the initial steps and results of the prototyping process towards on-chip integration of HCHO sensing, based on the Hantzsch reaction coupled to the fluorescence optical sensing methodology. This challenge was divided into two individually addressed problems: (1) efficient airborne HCHO trapping into a microfluidic context and (2) 3,5–diacetyl-1,4-dihydrolutidine (DDL) molecular sensing in low interrogation volumes. Part (2) was addressed in this paper by proposing, fabricating, and testing a fluorescence detection system based on an ultra-low light Complementary metal-oxide-semiconductor (CMOS) image sensor. Two three-layer fluidic cell configurations (quartz–SU-8–quartz and silicon–SU-8–quartz) were tested, with both possessing a 3.5 ”L interrogation volume. Finally, the CMOS-based fluorescence system proved the capability to detect an initial 10 ”g/L formaldehyde concentration fully derivatized into DDL for both the quartz and silicon fluidic cells, but with a higher signal-to-noise ratio (SNR) for the silicon fluidic cell ( SNRsilicon=6.1 ) when compared to the quartz fluidic cell ( SNRquartz=4.9 ). The signal intensity enhancement in the silicon fluidic cell was mainly due to the silicon absorption coefficient at the excitation wavelength, a(λabs=420 nm)=5×104 cm−1 , which is approximately five times higher than the absorption coefficient at the fluorescence emission wavelength, a(λem=515 nm)=9.25×103 cm−

    Marquage moléculaire d'acétone et diacétyle à basses pressions

    Get PDF
    La rĂ©duction de la taille d'un systĂšme implique des modifications de son comportement au niveau macroscopique. Au sein des micro-Ă©coulements gazeux, le libre parcours moyen des molĂ©cules gazeuses peut devenir du mĂȘme ordre de grandeur que la longueur caractĂ©ristique du systĂšme, gĂ©nĂ©rant ainsi des conditions dites de faible ou forte rarĂ©faction. Cet Ă©tat du gaz est caractĂ©risĂ© par une diminution du nombre des collisions intermolĂ©culaires, laquelle modifie les transferts de masse, les flux thermiques et les effets visqueux au sein de l'Ă©coulement. En outre, lorsque l'Ă©coulement gazeux implique des interactions du gaz avec une interface solide, comme c'est le cas dans les micro-canaux, la rarĂ©faction produit des dĂ©sĂ©quilibres thermodynamiques locaux qui se traduisent macroscopiquement par des sauts de vitesse et de tempĂ©rature en proximitĂ© de paroi, en modifiant radicalement l'ensemble du champ d'Ă©coulement. Ces effets de dĂ©sĂ©quilibre thermodynamique peuvent ĂȘtre reproduits aussi dans des systĂšmes macroscopiques Ă  basses pressions. Jusqu'Ă  prĂ©sent, la plupart des Ă©tudes expĂ©rimentales publiĂ©es dans la littĂ©rature et relatives aux Ă©coulements gazeux rarĂ©fiĂ©s dans des micro-canaux sont basĂ©es sur des mesures de quantitĂ©s globales, typiquement le dĂ©bit, reliĂ© Ă  la pression et la tempĂ©rature Ă  l'amont et Ă  l'aval du microsystĂšme, afin d'analyser indirectement les effets macroscopiques engendrĂ©s par le glissement et le saut de tempĂ©rature Ă  la paroi. Le manque d'information locale nous a poussĂ©s Ă  nous intĂ©resser Ă  la vĂ©locimĂ©trie par marquage molĂ©culaire (MTV) dans le but de chercher Ă  obtenir des mesures directes du champ de vitesse Ă  l'intĂ©rieur du canal. RĂ©cemment, les Ă©tudes prĂ©cĂ©demment menĂ©es dans notre Ă©quipe ont dĂ©montrĂ© que cette technique peut ĂȘtre adaptĂ©e pour des mesures de vitesse d'Ă©coulements de gaz au sein d'un canal, en conditions non-rarĂ©fiĂ©es, c'est-Ă -dire Ă  pression et tempĂ©rature ambiantes. Par contre, Ă  notre connaissance, il n'existe pas d'Ă©tude expĂ©rimentale qui donne des mesures directes de la vitesse de glissement Ă  la paroi pour un Ă©coulement de gaz confinĂ© en conditions de rarĂ©faction. En outre, ces Ă©tudes ont rĂ©vĂ©lĂ© les limitations et Ă©tapes clefs Ă  franchir pour pouvoir appliquer la technique de MTV aux Ă©coulements gazeux confinĂ©s en conditions de rarĂ©faction. L'obstacle principal rĂ©side dans le fait que les dimensions du canal d'Ă©tude sont liĂ©es au diamĂštre du faisceau laser, ce qui pour des raisons de rĂ©solution ne permet pas alors de travailler avec des canaux de profondeur infĂ©rieure Ă  1 mm environ. Dans ces dimensions, les dĂ©sĂ©quilibres thermodynamiques que l'on cherche Ă  Ă©tudier ne peuvent ĂȘtre atteints que par une diminution significative de la pression dans le systĂšme. Malheureusement, la diminution de pression conduit Ă  une rĂ©duction de la densitĂ© molĂ©culaire du traceur et rĂ©duit le rendement quantique de luminescence, causant une rĂ©duction considĂ©rable de l'intensitĂ© du signal de fluorescence et davantage encore de celui de phosphorescence. Afin d'explorer les limites de la MTV en Ă©coulement internes rarĂ©fiĂ©s, on prĂ©sente dans ce travail une Ă©tude relative Ă  l'Ă©mission lumineuse, et notamment Ă  la phosphorescence, de l'acĂ©tone ((CH3)2CO) et du diacĂ©tyle (C4H6O2) vapeur suite Ă  une excitation par un laser ultra-violet, en fonction de la concentration et de la pression du mĂ©lange gazeux Ă©tudiĂ©

    Point de vue et réflexions pédagogiques des étudiants-tuteurs en APP0. Jusqu'à quel point impliquer des étudiants dans la formation de leurs pairs ?

    No full text
    International audienceUn dispositif d'accueil et d'initiation Ă  une mĂ©thode de pĂ©dagogie active a Ă©tĂ© mis en place dans notre Ă©tablissement, faisant intervenir des Ă©tudiants dans le tutorat de leurs pairs. Une Ă©tude qualitative analyse les ressentis des diffĂ©rents acteurs de cette formation dans le but de savoir jusqu'oĂč l'Ă©quipe enseignante peut impliquer ces Ă©tudiants dans des activitĂ©s pĂ©dagogiques
    • 

    corecore