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Abstract

Successful development of a micro-total-analysis system (UTAS, lab-on-a-chip) is strictly related to the degree of minia-
turization, integration, autonomy, sensitivity, selectivity, and repeatability of its detector. Fluorescence sensing is an optical
detection method used for a large variety of biological and chemical assays, and its full integration within lab-on-a-chip
devices remains a challenge. Important achievements were reported during the last few years, including improvements of
previously reported methodologies, as well as new integration strategies. However, a universal paradigm remains elusive.
This review considers achievements in the field of fluorescence sensing miniaturization, starting from off-chip approaches,
representing miniaturized versions of their lab counter-parts, continuing gradually with strategies that aim to fully integrate
fluorescence detection on-chip, and reporting the results around integration strategies based on optical-fiber-based designs,
optical layer integrated designs, CMOS-based fluorescence sensing, and organic electronics. Further successful development
in this field would enable the implementation of sensing networks in specific environments that, when coupled to Internet-
of-Things (IoT) and artificial intelligence (Al), could provide real-time data collection and, therefore, revolutionize fields
like health, environmental, and industrial sensing.

Keywords Lab-on-a-chip - Off/on-chip integration strategy - Lab-on-a-CMOS - Microfluidic-PCB - In-plane optics -
Organic electronics - Fluorescence detection

1 Introduction biological sensors result not only in ultra-portable devices,
but in advantages such as enhanced process performance,
higher analysis speed and reduced reagent consumption,
significantly lowering fabrication, maintenance, and opera-
tional costs (Shakoor et al. 2018). Some fields that benefit

from these achievements are healthcare monitoring (Boppart

Recent findings in the fields of microfluidics, integrated cir-
cuitry, microfabrication, and micromachining techniques
have enabled considerable advancements in the miniatur-
ized sensing technologies. Downscaling chemical and
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and Richards-Kortum 2014; Wessels and Raad 2016; Zi
et al. 2016; Papageorgiou et al. 2017; Sharma et al. 2018),
organ-on-a-chip (Zhang et al. 2015; Si Hadj Mohand et al.
2017; Kilic et al. 2018), drug screening (Zhang et al. 2015),
food monitoring (Bhattacharya et al. 2017), and environ-
ment monitoring (Ricciardi et al. 2015a; Calvé et al. 2017,
Rezende et al. 2019; Miriuta et al. 2020). Potential applica-
tions are countless with a huge impact on the quality of life
(Chen et al. 2012). They are also directly linked with the
next generation of smart cities (Zhao et al. 2015), artificial
intelligence (AI), and Internet-of-Things (IoT).

Ideally, a lab-on-a-chip device should perform all the
steps of a complete analysis in an integrated and automated
fashion. This may include sampling, sample pre-treatment,
chemical reactions, analytical separations, analyte detec-
tion, product isolation, and data analysis (Rios et al. 2012).
Even though the achievements reported in the literature are
numerous, apparently the transition of these devices from
lab prototyping to market is still limited, if not negligible
(Volpatti and Yetisen 2014; Mohammed et al. 2015; Ack-
ermann et al. 2016a), and the remaining challenges are still
considerable. The main challenge is to identify and optimize
strategies for the integration of all analysis functions into
a cost-efficient, technician-free, robust microstructure, to
develop fully-autonomous micro-analysis systems.

The integration of the detection mechanisms with micro-
fluidics may be one of the most promising directions towards
the widespread application of lab-on-a-chip devices (Wu and
Gu 2011; Watts et al. 2012; Llobera et al. 2015). Generally,
for detection within micro-integrated systems, mechanical,
optical, and electrochemical methods are primarily used
(Pires et al. 2014). The optical methods are usually preferred
because they are robust, very sensitive, non-destructive,
broadband and can be used for in-situ or in-line monitoring
(Pires et al. 2014; Rodriguez-Ruiz et al. 2016; Yang and
Gijs 2018). This combination of optics and microfluidics

merged towards a relatively new field named optofluidics.
Optofluidic systems aim to integrate the optical functions
of detection in a single chip. The roadmap (Minzioni et al.
2017), the recent achievements (Chen et al. 2019), and the
new perspectives (Song and Tan 2017) in the optofluidics
field for lab-on-a-chip applications have also been published
in (Zhu et al. 2013; Rodriguez-Ruiz et al. 2015; Zhang et al.
2016; Song et al. 2017). Among all-optical methods, fluores-
cence sensing is the most common analytical and diagnostic
method in biological, chemical, and medical applications
(Yang et al. 2015; Hong et al. 2017a; Wei et al. 2017), and
it is largely accepted due to its capability to attain ultra-low
detection limits (Ryu et al. 2011; Babikian et al. 2017).
Fluorescence is the property of a molecule to absorb light
at a specific wavelength and emit it at a longer wavelength,
a phenomenon known as the Stoke shift (see Fig. 1). Conse-
quently, its quantification involves a light emission source
(1) and a light detector (5). The amount of fluid involved in
microfluidic systems is by definition reduced; therefore, the
emitted fluorescence signal is weak. The ratio between fluo-
rescence emission intensity and excitation beam intensity is
defined as the quantum yield, which is molecule specific,
usually the emission being three orders of magnitude lower
than the excitation. This difference between excitation inten-
sity and emitted fluorescence intensity makes the imple-
mentation of a complex optical path necessary, involving a
system of lenses to focus (4) the fluorescence onto a photon
detector (5) (Wei et al. 2017). Filters are used in traditional
configurations of fluorescence detectors to selectively allow
light with specific wavelengths. Emission filters (2) are used
to reject parasitic components of the excitation light beam
(1), allowing the passage of only the specific wavelength
band needed for the excitation of the analyte (3). Detection
filters (4) are used to stop scattered light from reaching the
detector surface (5). The background noise levels are directly
linked with the filtration efficiency. Noise is an undesirable
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Fig. 1 General fluorescence detection scheme (orthogonal configuration)
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parameter quantifying the level of parasitic light reaching
the detector. The signal-to-noise ratio (SNR) is used to char-
acterize the performance of a detector, quantifying the ratio
between fluorescence and parasitic light. This multitude
of optical components make a system complex, bulky, and
expensive (Hong et al. 2017a).

Thus, fluorescence sensing devices are not only sophisti-
cated products integrating multidisciplinary know-how but
also key components of lab-on-a-chip systems (Dandin et al.
2007). The miniaturization of fluorescence sensing devices
is challenging—often developed systems end up being chip-
in-a-lab devices, instead of lab-on-a-chip platforms (Var-
sanik and Bernstein 2013; Shakoor et al. 2018). Different
integration strategies of fluorescence optical detection have
been reported during the last decade. Among them, the most
promising one reviewed in this paper include optical-fiber-
based designs, optical layer-integrated designs, the CMOS
(complementary metal-oxide—semiconductor)-based micro-
fluidic technologies, and organic electronics based designs.
Efforts are continuously directed ahead to the identification
of an integration paradigm that converges towards an ultra-
miniaturized fluorescence detection scheme (Shang and
Zheng 2017). This system should assure the following char-
acteristics: full working autonomy, multiplexing, low-cost
fabrication, fast response time, robustness and compactness,
specificity, and ultra-sensitivity (Pfeiffer and Nagl 2015).
Even if nowadays the achievements are consistent, a generic
strategy fulfilling all the above-mentioned specifications is
still elusive. The main aim of this review is to identify the
main recent integration strategies in the miniaturization of
fluorescence detection systems, emphasizing design and
manufacturing procedures, limits of detection achieved, and
further possible improvements.

2 Miniaturized off-chip fluorescence sensing
architectures

Oft-chip approaches (or free-space designs) are usually min-
iaturized versions of conventional fluorescence detection
systems (Babikian et al. 2017; Yang and Gijs 2018) gener-
ally being linked with the use of pinholes at the focal points
along the optical path, to couple macro-scale optical detec-
tion to micro-scale detection volumes. In this case, light
propagates in free-space before and after interacting with
the target molecule, and optical elements (filters, lenses, mir-
rors, light sources, detectors) are separated from the micro-
chip. Modular configuration confers them the advantage of
convenient integration within a wide variety of already exist-
ing platforms, enabling them as plug-and-play microscopes
(Zhang et al. 2015). Table 1 summarizes the achievements
of some identified architectures.

The fluorescence microscope developed by Ghosh et al.
(2011) (see Fig. 2. a) presented a high degree of miniaturiza-
tion using state-of-the-art in the field of optoelectronics. It
proposed an innovative design solution, embedding all opti-
cal elements within a 2.4cm? polyetheretherketone (PEEK)
housing. A blue LED, integrated on a 6 x 6mm? printed
circuit board (PCB), was used as an excitation source. A
drum lens was used to collect the emitted light, which was
then passed through a 4 X 4mm? excitation filter. A dichroic
mirror directed the light to the sample, via a focusing gradi-
ent refractive index (GRIN) objective lens. The fluorescent
emission passed through the objective lens, dichroic mirror,
an emission filter, and an achromatic doublet lens, which in
turn focused the image onto a CMOS sensor. The 640 x 480
pixel CMOS sensor, mounted on a 8.4 X 8.4mm? printed
circuit board had a 60% quantum efficiency at 530 nm. The
LED, image sensor, micro-lenses, and filters, were made
using batch fabrication, decreasing the cost per unit. The
device was built in an alignment-free configuration, but not
stand-alone, requiring a computer for image processing.
Data acquisition between microscope and computer was
intermediated using an external PCB, allowing imaging at
35 Hz or 100 Hz over 300 X 300 pixels subregions.

More recently, other versions of miniaturized off-chip
detectors were developed with fabrication costs per unit
varying from $2000 (Fang et al. 2016) to $10 (Zhang et al.
2015). For example, a handheld fluorescence detector with
a broad range of possible applications, compact size, and
capability to work independently was proposed by (Fang
et al. 2016) (see Fig. 2b). This device embedded a light
source (450 nm laser diode), an optical circuit module
(a 450 nm band-pass filter, a dichroic mirror, a collimat-
ing lens, a 525 nm band-pass filter, a 1.0 mm aperture),
an optical detector (miniaturized photomultiplier tube),
and an electronic module (signal recording, processing
and displaying units). The stability was tested for more
than 5 h for continuous detection of 100 nM sodium flu-
orescein, and the relative standard deviation was below
1%. Two configurations were tested, the quasi-confocal
configuration was proven to be more advantageous com-
pared to an orthogonal configuration, mainly from the
perspective of possessing more top open space to be used
for installing disposable interrogation cuvettes. The con-
figuration used for positioning the optical elements is
usually a compromise between the performance and the
ease-of-use of the final device. A hand-held orthogonal
detector that was proposed by Pan et al. (2018), where the
fluorescence collection was performed at 45°, decreased
the background scattering light intensity compared with a
90° configuration. Compared to a confocal configuration,
in the orthogonal configuration the excitation and collec-
tion paths were separated, leading to a reduced background
signal without using complicated optical components. This
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Fig.2 a Integrated fluorescence microscope, 2.4cm® volume, 1.9 g
weight. b Compact handheld quasi-confocal laser induced fluores-
cence. ¢ Integration of LEGO-like blocks hosting elements of the
optical, electrical, and fluidic circuits in order to modulate the opto-

system was built for high-speed capillary electrophore-
sis (CE) and it integrated in a modular way a picoliter
scale sample injector, short capillary-based fast CE, high-
voltage power supply, orthogonal laser induced fluores-
cence (LIF) detection, battery, system control, on-line
data acquisition, processing, storage, and a display. The
proposed architecture was embedded into a monolithic
black acrylonitrile butadiene styrene (ABS) block of
44 mm X 42 mm X 40 mm dimension, the overall fabrica-
tion cost reaching $150. The optical circuitry included a
high intensity laser diode (18 mm length, 12 mm diam-
eter, 80 mW) as light source, two small collimating lenses
for laser beam focusing and fluorescence collection, and
a photodiode (9 mm length X 6.2 mm diameter) as optical
detector. The collimating lens consisted of three lenses
and had a small size of 8.7 mm length X 9.6 mm diameter
and 7 mm focal distance. A focusing spot of 10 pm for
the laser beam could be obtained at the center of a capil-
lary channel. The photodiodes achieved a larger degree of
miniaturization compared to the photomultipliers, but the
sensitivity was lower.

A design based on a reflective sphere, aiming at enhanc-
ing the excitation and collection efficiency, was proposed
by Harmon et al. (2018). The interrogation volume was
located in the center of a sphere, to produce effects that
increased the collection efficiency. A hole was drilled
in the sphere, perpendicular to the direction of a micro-
channel, serving as a light guide from the source located
outside of the sphere. The incident light intersected the
sample in the region of the interrogation volume, and the
reflected light from the walls of the sphere refocused on

Inner view

m—Plunger b

Syringe

‘Mirror

fluidic systems. (a) Reprinted from (Ghosh et al. 2011), Copyright
2011, with permission from Nature Publishing Group. (b) reprinted
from (Fang et al. 2016), Copyright 2016, with permission from Else-
vier. (c) Reprinted from (Lee et al. 2018), Copyright 2018, with per-
mission from Willey

the sample, rendering the excitation more efficient. A simi-
lar arrangement was available for the fluorescence that was
collected through another drilled channel in the sphere.

A cost-efficient device built from off-the-shelf compo-
nents, including a commercially-available CMOS-based
universal serial bus (USB) camera was reported by Zhang
et al. (2015). Four poly(methyl methacrylate) (PMMA)
sheet frames with holes near the edges, for bolts/screws,
were fabricated to serve as a layered modular support for
the optical components. Screws were used to adjust the
distance between the base and sample holders. The bottom
PMMA layer contained the CMOS sensor. The lens was
inverted to obtain magnification rather than the de-mag-
nification mechanism of the camera. Resulted modularity
allowed the integration with a large variety of preexisting
platforms (e.g. cell culture plates, microfluidic devices,
and organs-on-a-chip systems).

Time-resolved fluorescence is a methodology imple-
mented for improving the sensitivity of the detection by
sequentially powering the emitting source on and off to
avoid autofluorescence or excitation light reaching the
detector while fluorescence is quantified. Biotechnology,
electronics and chemical technology were combined in
Zi et al. (2016) to develop an integration scheme for a
time-resolved fluorescence sensing system. Off-the-shelf
miniaturized modules (ultraviolet light-emitting diode
(UV-LED), silicon photodiode, signal processing units,
displays, and optical paths) were integrated into a detec-
tion platform of 26 cm X 20 cm X 13 cm. This instrument
was used for quantification of analytes in human blood and
other body fluids.
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Modular optofluidics is the solution proposed by Bram-
mer and Mappes (2014) and by Lee et al. (2018), among
others, aiming to make the widespread implementation of
the microfluidic systems more reliable (see Fig. 2¢). Lee
et al. (2018) proposed a strategy based on modular blocks
embedding the elements of the optical, electrical, and flu-
idic circuits into LEGO-like structures fabricated using rapid
prototyping fabrication techniques.

3 Towards on-chip fluorescence sensing
architectures

On-chip systems are defined as structures that have all the
electrical, optical, chemical, and detection functions inte-
grated within the microfluidic chip platform (Kuswandi
et al. 2007). This integration strategy that combines optics
and microfluidics, resulting in highly efficient liquid—solid
interactions created the field of optofluidics (Yang and Gijs
2018). The development process of integrated circuits estab-
lished technological methodologies that have been success-
fully used to solve issues in fields outside of electronics,
generally known as the MicroElectroMechanical Systems
or MEMS industry (Wu and Gu 2011). In this way, routes
towards new technological fields appeared, such as microme-
chanics, microfluidics and micro-optics (integrated optics)
(Hierlemann et al. 2003). Soon after this, the limitations of
integrated circuits on silicon chips (material mainly used
for the development of integrated circuits) became appar-
ent. The requirements of electronics frequently collided with
those of optics and mechanics, so that integration on one and
the same chip (monolithic integration) proved to be hard
(Griindler 2007). Thus, engineers had to consider new inte-
gration methodologies and hybrid technologies have been
envisaged, i.e. the final device was composed of complex
subunits, which were manufactured by different techno-
logical processes. Polymer are here considered due to their
ease-of-fabrication and cost-efficiency. Within this section, a
brief description of the latest achievements towards on-chip
integration of fluorescence detection using hybrid technolo-
gies is provided.

3.1 Optical-fiber-based designs

Implementation of optical fibers based designs in fluores-
cence sensing (see Table 2) can be observed from two per-
spectives: (a) full-core optical fibers, and (b) microstructured
hollow-core optical fibers. Integration of full-core optical
fibers as waveguides intermediating the light transfer from
external excitation sources towards the sample volume and/
or the fluorescence transfer towards external photon detec-
tor has been one of the initial techniques used in fluores-
cence sensing miniaturization. Actualized theoretical aspects

@ Springer

related to the implementation of optical fibers in fluores-
cence biosensing applications could be found in a compre-
hensive review (Benito-Pena et al. 2016).

Optical fibers were adopted as waveguides in this field
due to the fact that they are characterized as high light
transmission efficient, low-cost, free from electronic noise,
providing protection for the electronic components when
dangerous chemical environments are present (Yue et al.
2015; Yeh et al. 2017). However, their main drawback
results from the fact that they are not user-friendly, requiring
precise alignment, with coupling being sensitive to vibra-
tions. Some recent works treated this topic (Matteucci et al.
2015; Rodriguez-Ruiz et al. 2015), proposing some fabri-
cation methodologies allowing free and relatively precise
alignment of the fibers. For example, (Matteucci et al. 2015)
introduced a fabrication methodology that embedded stand-
ard commercially-available optical fibers with Cyclic olefin
Copolymer (CoC) TOPAS 5013 hard-polymer chips, based
on an injection molding technique (i.e. production-friendly).
TOPAS 5013 polymer possesses characteristics that are
compatible with the demands of the optofluidic chips. This
polymer is highly transparent in the visible spectrum, pos-
sessing a high glass transition temperature (140 °C), very
low water absorption, is resistant to acids, alkaline agents
and polar solvents, and avoids biofouling (minimal surface
treatments are needed). The autofluorescence of TOPAS
5013 could be decreased to values that are 20% lower than
the ones resulting in silica material by the addition of a mas-
ter-batch of a blank dye to the polymer granulate used for
injection molding of the devices (Jstergaard et al. 2015).
Hatch et al. (2014) used optical fibers with ball lenses at
their tip, enhancing the light optical density, enabling the
implementation of cost-effective and low-power LEDs as
light sources. The device was portable, but still bulky rela-
tive to the current integration trends.

Even if the current trend in the miniaturization of opti-
cal sensing is to bring the light source and the photon
detector in the close vicinity of the interrogation sample,
standard optical fibers are still used for those cases where
robust modular systems are desired. Three-dimensional
modular microfluidics has been recently introduced
(Bhargava et al. 2014) as a methodology to overcome the
issues appearing when monolithic design strategies fail.
Modularity is one of the solutions envisaged for bringing
microfluidic devices closer to its large-scale commercial
implementation. Thus, standard optical fibers are still used
nowadays for the development of modular and reliable
miniaturized fluorescence-based optical sensors. Acker-
mann et al. (2016b) introduced the Chip-to-World Inter-
face (CWI) as a plug-and-measure sensing strategy based
on a CO,-laser machining fabrication technique, to create a
low-cost and robust modular interface facilitating the con-
nection to a large variety of external photon detectors and
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Further improvements [Author’s sugges-

tions]
Resorufin  LOD could be improved by integrating opti-

Analyte

LOD
6 nM

Remote detection

Applications

Achievements

Table 2 (continued)

&

Ngernsutivorakul et al. (2017) Free-standing probe with integrated optics

References

Springer

cal filters directly onto the tips of the fibers

that could focus and collect light from
outside the probe, be easily coupled to

fiber optics, and have separate input (e.g.,

excitation) and output (e.g., emission)
paths; cost-efficient soft-lithography

techniques used for fabrication

light sources. This concept refers to the implementation of
an optical fiber with coaxial radio frequency subminiature
version A (SMA) connectors, allowing manipulation of
the detection system without special training of a potential
user. Yue et al. (2015) used also optical fibers with SMA
connectors to develop a modular fluorometer for detection
of fluorescein isothiocyanate. A concentration of 10 ng/
mL could be measured, and the system presented a good
linearity from 10 ng/mL to 10 pg/mL. The opto-electrical
converter module and the signal acquisition device were
modular and could be replaced for the detection of other
molecules. Moreover, an optical probe is a tool used to
collect light from otherwise inaccessible volumes. Ngerns-
utivorakul et al. (2017) proposed a 0.5 mm thick and 1 mm
wide PDMS probe with two optical fibers integrated as
inlet and outlet light waveguides. In addition, the probe
embedded pre-aligned mirrors, lenses, allowing separate
input and output optical paths. The probe was disposable,
reusable from one chip to another, but not alignment-free,
requiring a specific instrument to couple it to a microflu-
idic chip.

Next implementation level of optical fibers in the minia-
turization process of fluorescence sensing is represented by
the microstructured optical fiber (MOF) or photonic crystal
fiber (PCF). The field of optofluidics in microstructured opti-
cal fibers was recently reviewed in Shao (2018) and Ertman
et al. (2017). It gained high interest due to its capability of
simplifying optical fiber sensors and improving the level of
integration. Hollow-core Bragg fibers (HCBFs) working on
the principle of evanescent wave are a promising solution
that might converge towards a fully integrated detector (Li
and Nallappan 2019). HCBFs form a particular class of pho-
tonic bandgap (PBG) fibers (Huang et al. 2004) with a guid-
ing mechanism that is capable of confining the light in the
fiber core from all incidence angles and polarizations. Due
to the PBG effect, the HCBFs have features of a wideband
band-pass filter. The Bragg layers can be designed in such
a way that they behave as a reflective surface for specific
wavelengths and absorbing surface for others. By introduc-
ing a defect layer into the common cladding band, the excita-
tion light is rejected, while fluorescence light is transmitted
towards the photon-sensing element. Also, the rejection fil-
tering is narrowed due to the transverse resonant behavior,
explained elsewhere (Chen et al. 2008). Shang and Zheng
(2017) applied this principle, resulting in a very compact
detection device where the detection cuvette, the collector,
the delivery channel for the desired fluorescence, and the
filter for residual excitation light mixed with fluorescence
were all part of the fiber (see Fig. 3). In Yang et al. (2015),
a hollow optical fiber with suspended core was proposed,
fabricated, and characterized for detection of Rhodamine
6G. The outer diameter of the fiber was 350 um, the inner
diameter of the fiber was 210 um and the core diameter was
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Excitation light

¥

A m==)  Fluorescence

(a)

Mirror

Hollow Core Bragg Fiber

Fig.3 a Compact fluorescence-sensing scheme based on hollow core
Bragg fibers, serving as interrogation cuvette, collector, delivery
channel for the fluorescence, and the filter for the residual noise. b

40 um. The inlets and outlets were made on the surface of
the hollow fiber by CO, laser etching, all the others optical
elements being off-chip.

3.2 Optics layer-integrated designs

The basic principle of this strategy is to integrate the active
and passive optical components on a planar layer, mainly
by implementing the micro- and nano-fabrication tech-
nologies (Dandin et al. 2007). Transparent materials with
high refractive indexes, such as polymers, are usually used
as waveguides and the light remains confined by multiple
total internal reflections (Griindler 2007). Some of the main
active current research directions are in-plane microfluidic
lenses, printed-board microfluidics, antiresonant reflecting
optical waveguides (ARROWSs), and on-chip integration
of solid-state light emitters (SSLE). In-plane microfluidic
lenses or on-chip lens systems mainly aim to robustly inte-
grate light beam focusing customized solutions in the same
functional layer as the fluidic layer (Bates and Lu 2016).
Liquid-core cladding lenses, pressure-controlled liquid—air
interface and gradient refractive index lenses are some con-
figurations recently reported in the literature tackling this
subject (see Table 3).

Femtosecond lasers revolutionized the three-dimensional
micro-fabrication of the materials due to their very short
pulse width and high peak intensity. Known as a compli-
cated technique, recent advancements proved the femtosec-
ond laser micromachining as a cost-effective and reliable
fabrication technique for optofluidic systems (Sugioka and
Cheng 2012; He et al. 2014; Sugioka et al. 2014; Gu et al.
2015; Joseph et al. 2017; Serhatlioglu et al. 2017). An in-
plane integrated microfluidic lens whose modulation could
be on/off switched on demand was fabricated by Pai¢ et al.
(2017) using femtosecond laser micromachining (FLM)
fabrication technique. Modulation of the light is a common
technique used to enhance the measurement sensitivity by

m==) B |m==pPhoton detector

()

Cross-section scheme of the device with the photonic band gaps of
different refraction indexes (Shang and Zheng 2017)

subtracting the noise. The focused light could be modulated
by dynamically changing the liquid in the lens through a
droplet generation module. Femtosecond laser micromachin-
ing and radio frequency (RF) sputtering were implemented
for the incorporation of a microfluidic network, excitation,
filtering, and collection elements in one glass substrate, in a
90° configuration (Guduru et al. 2016). Here, the FLM was
used to fabricate the microfluidic channel, the perpendicular
fiber channels, perfectly aligned and embedded in the fused
silica layer. A wavelength filter, behaving as a Bragg mirror,
was fabricated by implementing an RF sputtering method.
One-dimensional photonic crystals were used, since they
are dielectric structures of different refractive indexes, per-
mitting propagation of only specific wavelengths. They can
be designed to have a photonic bandgap in the wavelength
region of excitation, similar to the concept explained in the
previous subchapter. On the top of the filter, a binary Fresnel
lens (BFL) was fabricated, leading the collected light out of
the chip. Fresnel lenses are flat, low thickness structures with
concentric rings designed to focus the light (40% efficiency)
in optical microfluidic devices (see Fig. 8b) Their fabrication
within a microfluidic channel is based on the nanoimprint
process (Siudzinska et al. 2017). Efficient beaming of the
emitted radiation is very important since it can drastically
affect the performance of the assay. Ricciardi et al. (2015b)
proposed an optofluidic chip based on a multilayered pho-
tonic crystal structure embedded on a PDMS structure. The
efficiency of fluorescence collection was experimentally
demonstrated in an antibody—antigene immunoassay, result-
ing in a decrease of the limit-of-detection (LOD) for labelled
antigenes by a factor of about 40. The measurements were
demonstrated to occur in a robust and reproducible way,
with reduced optical alignment issues. Here, it deserves
mentioning the method proposed by Watts et al. (2012) for
an efficient beaming of the excitation light. This method
eliminated the need for free-space optics and high-quality
light sources, through on-chip 3D hydrodynamic focusing.

@ Springer
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The on-chip hydrodynamic focusing is achieved through the
introduction of micro-patterned optical components in an
epoxy-based SU-8 photoresist layer that hosts also the fluidic
components.

The printed circuit board (PCB) is a mature technology
used and improved for decades in electronics, to mechani-
cally support and electrically connect components using
conductive tracks etched in layers of copper onto and/or
embedded between sheets of a non-conductive substrate.
The materials usually used as substrates for the fabrication
of PCBs are resistant at high temperatures (> 170 °C), this
characteristic making them compatible with microfabrica-
tion techniques that involves elevated temperatures. The
reliability and potential of PCBs for miniaturization of
fluorescence sensing systems was demonstrated recently
(Novo et al. 2014; Shin et al. 2015, 2017; Babikian et al.
2017; Obahiagbon et al. 2018). A PCB offers an integration
alternative to glass/polymeric microfluidic chips, which are
not integration-friendly with standard, off-the-shelf opto-
electronic elements (Babikian et al. 2017).

Portable systems integrating light-emitting diodes (LEDs)
for multiple target analysis were proposed in Shin et al.
(2015, 2017). Optical functions were modularly parallelized
within three layers (see Fig. 4a, c). The first layer (filtering
and detection layer) hosted a photon detector, a dichroic lens,
and a color filter. The intermediate layer was represented by
a PCB with three LEDs of different wavelengths mechani-
cally mounted around a circular orifice, which illuminated
the interrogation volume from the opposite direction of the
photon detector. Avoiding direct illumination of the detec-
tor was relevant for increasing the signal-to-noise ratio.
The circular cut assured that the emitted fluorescence was
transferred from the third layer (interrogation volume) to the

—_—

Excitation beam from LED
(@) =P Fluorescence beam from detection chamber

Microchannel
Reflector

/

i CMOS pixel array
(b) Light block

Fig.4 a Parallel layering distribution of the detection functions with
the PCB sandwiched in between the microfluidic layer and the detec-
tion layer (Shin et al. 2015, 2017). b Cross-section of the microflu-
idic-PCB fluorescence detector, built using two PCBs. The design
strategy avoided the direct illumination of the interrogation volume,

Microfluidic layer

Fluorescence species gojer collimator film

—powms layers

first layer (filtering and detection layer), while the PDMS
microfluidic layer was disposable. All above-mentioned
components were embedded into a portable box equipped
with a display, permitting the selection of the operation. A
comprehensive review about LEDs implementation with
fluorescence sensors is reported in Yeh et al. (2017).

As a predictable continuation of the above-mentioned
concepts, the microfluidic-PCB concept was introduced by
Babikian et al. (2017). This concept involved a three-layer
device, integrating with the aid of two PCB parts, all the
fluidic, electrical, mechanical and optical components within
a compact system (see Fig. 4b). One PCB was fixed and
non-disposable, comprising all active components, and was
denoted the reader chip. The second PCB, named the micro-
fluidic chip, was disposable and encompassed the passive
structures of the device such as microchannels, high volt-
age electrodes, and micromachined light reflector. A stand-
ard surface-mounted blue LED was used as a light source.
The detection was implemented using a standard surface-
mount 2-megapixel CMOS imaging array with integrated
red—green—blue (RGB) filters. The CMOS sensors were
inexpensive, compact, and compatible with the microfluidic-
PCB approach. A surface-mounted light reflector was used
to reflect the excitation light path towards the detection chan-
nel. A rectangular slit was created in the upper PCB, above
and along the microfluidic channel, to avoid light scattering
and autofluorescence of the PCB substrate. The background
noise associated with the excitation light was further sup-
pressed by a Soller collimator film, laminated on top of the
CMOS pixel array. A Soller collimator collimates light by
allowing the passage of rays that are almost parallel with its
optical axis and it is used in lens-free fluorescence detec-
tion schemes since uniform spatial distribution of light was

Printed Circuit Board

Filtering and detection layer

Microalgae\(Ch/orella vulgaris)

v o

Excitation light

Fluorescent emission LED (A,,,=448 nm)

(Ao, =680nm) L
e

4 mm

Dichroic mirror (LPF 647 nm)

i

(c) Si Photodiode
Color filter (LPF 645 nm)

a Soller thin film collimator being coated on top of the CMOS to
reduce the background noise (Babikian et al. 2017). ¢ Fluorescence
detection system with backside illumination scheme. Reproduced
from (Shin et al. 2015, 2017), Copyright 2015, with permission from
Elsevier
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crucial (Balsam et al. 2012). In this work, it also avoided the
cross-talking between the light source and the CMOS image
sensor. This heterogeneous method embeds individually
manufactured components, such as electrodes, heaters, light
sources, detectors, and microfluidic components between the
electrical and microfluidic layers using standard fabrication
processes. All the components (light source, microchannel,
optical guide, and detection sensor) were integrated within
a structure having the approximate dimensions of a credit
card, 7cm X5 cm X4 mm.

Total internal reflection (TIR) takes place when a light
beam meets a medium with a lower refraction index at an
angle greater than the critical angle. This critical angle can
be calculated knowing the refraction indexes of both media.
The phenomenon can be used to mitigate direct illumina-
tion of the detector and, by consequence, to lower the noise
level. For example, a design solution using a lateral excita-
tion configuration, to (1) maximize the photon flux exciting
the microfluidic channel while (2) preventing excitation light
reaching the sensor, was proposed by Novo et al. (2014).
This configuration (see Fig. 5a) involved a prism-like poly-
dimethylsiloxane (PDMS) microchannel sealed with a glass
substrate. A printed circuit board hosted a micro-fabricated
a-Si—H photodiode and contained a two-level pocket, which
kept a 50 um space between the microfluidic chip and pho-
todiode needed for the total internal reflection condition. A

A

m uchannel

Air| 50 pm
]

a-Si:H photodiode

(@ (b)

Fig.5 a Lateral excitation onto a PDMS microfluidic device coupled
to a photodiode PCB. The 50 pym air-gap separates the microfluidic
device from the photodiode, in order to assure the TIR effect at the
glass/air interface for the excitation light. b Multi-functional sensing
device based on 150 um optofluidic jet, equipped with a recirculation
system. The detection scheme is based on the principle of the TIR in

@ Springer

405 nm laser beam was directed perpendicular to the lateral
prism-like PDMS structure in which the sides made a 70°
angle with the flat surface and was focused to illuminate
the microchannel while experiencing total internal reflec-
tion at the glass—air interface. This configuration improved
the detectability range by two orders of magnitude as com-
pared to a normally incident excitation configuration, sig-
nal-to-noise ratio being ameliorated for detection of specific
fluorophores.

Berner et al. (2017) developed a method based on sand-
wiching laser-cut double-sided adhesive tapes coupled with
the latest generation of thin-film photodetectors, enabling
miniaturization by the custom fitting of amorphous silicon-
based photodiode arrays to the geometry of the flow channel.

One promising methodology using TIR phenomena was
presented in Jang and Yoo (2013), where a fluorometer inte-
grating a total internal reflector was introduced, a condens-
ing mirror and the detection chamber (width 1.5 mm X depth
0.8 mm Xxlength 5 mm) within a single 1.2 mm thick poly-
carbonate substrate. The total internal reflector enabled
orthogonal detection, and the condensing mirror increased
the selectivity of the fluorescence emission. The limit of
detection achieved was 5 nmol/L and the linearity was 0.994
for 6-FAM fluorescence dye. The condensing mirror was
coated with a 200 nm thick aluminum layer, having the role
of better fluorescence collection from the sample and more

central fiber @
for Raman }
excitation (2) /

orthogonal fluorescence (R
excitation (1) Q %

bifurcated bundle\

outer fiber
for detection

et waveguide

e 7 fiber prob’e/"
-..__total internal reflection .-

the liquid jet. Two possible ways of liquid jet excitation: (1) orthogo-
nal fluorescence excitation, and (2) optical fiber for Raman excitation.
(a) Reproduced from (Novo et al. 2014), Copyright 2014, with per-
mission from The Royal Society of Chemistry. (b) Reproduced from
(Persichetti et al. 2017), Copyright 2017, with permission from The
Royal Society of Chemistry
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efficient distribution to the photon detector, located on the
opposite side of the fluidic chamber, while the light source
(465 nm LED) and the photon detector were externally
located. A system based on an optofluidic jet waveguide (see
Fig. 5b)—a liquid micro-jet with 150 pm diameter—lead-
ing to highly efficient signal excitation and collection was
introduced by Persichetti et al. (2017).

Alignment of the light emitter and the optical circuit is
a very sensitive part of an optofluidic system. Small varia-
tions (less than 5%) may produce large performance varia-
tions that make the system unreliable (Llobera et al. 2015).
Thus, monolithic integration of the solid-state light emit-
ters (SSLEs) is a field of high importance. Llobera et al.
(2015) proposed an innovative hybrid monolithic solution
(see Fig. 6a) for on-chip integration of a SSLE aligned with
a multiple internal reflection (MIR) system. The SSLE was
made of a fluorophore-doped hybrid xerogel material. The
fabrication procedure involved a low-cost photolithographic
fabrication step. Air mirrors were made to assure light cou-
pling from the light source to the MIR system. Robbins et al.
(2018) introduced a compact device embedding a SiO,/
Ta,Os multilayer optical interference filter, a hydrogenated
amorphous silicon (a-Si:H) pin photodiode, an asymmetric
microlens, and a GaN micro LED. The system was capable
to collect fluorescence light in a 100 um microfluidic chan-
nel, the device reaching a 36 nM limit of detection for fluo-
rescein solution, but the integration of the micro LED was
concluded as being difficult due to its lack of directionality.
However, the fabrication procedure paved the way towards

\/"'_ MIR outlet (@

Selif-alignment channel
Biconvex lens
Muttiple internal

/ reflection system

Focusing air mirror

' W
Air mirror waveguide
Solid-state light emitter

Teeth-shaped air mirror

ﬁat air mirror

(a) SSLE outlet ——> (b)

Fig.6 a Photonic lab-on-a-chip with the solid-state light emitter, air
mirrors, multiple internal refection system, biconvex lens, and the
channel for fiber optics integration. (b) (a) Illustration of the flexible
sensor design and fabrication methodology. (b) Scanning electron
microscopy view of the VCSEL and the 3 um thick Si-Photodiode.

— -

planar heterogeneous integration of GaN micro LED on an
a-Si:H fluorescence sensor. Kang et al. (2016) developed a
fabrication methodology (see Fig. 6b) for building mechani-
cally flexible microfluidic fluorescence sensors. They man-
aged to integrate microscale vertical cavity surface-emitting
lasers (micro VCSELSs) and silicon photodiodes on a flexible
substrate of polyethylene terephthalate (PET). This substrate
integrated with elastomeric fluidic chips on plastics demon-
strated potential for multiplexed, real-time operation.
Polymers or silicon-based materials with refractive
indexes varying between 1.4 and 3.5 are usually used for
the fabrication of optofluidic integrated systems. Since the
refractive index of water is 1.33, the total internal reflec-
tion condition required to confine the light when hollow-
core optical waveguides are used simply cannot be satis-
fied for this particular case. Antiresonant reflecting optical
waveguides (ARROWs), based on the thin-film interference
principle and the conventional silicon microfabrication tech-
niques, propose a solution for this inconvenient. A particular
solution is represented by the aerogel waveguides. A series
of alternating dielectric layers creates the conditions for
interference-based guidance of leaky modes (Parks et al.
2014). This technique proved to be very suitable for very
sensitive fluorescence detection. Parks et al. (2014) used this
technology for developing a programmable microfluidic chip
with on-chip detection of fluorescence. The active control
of the biologic solutions was realized using programmable
microvalve arrays (see Figs. 6a, 7). Measor et al. (2011)
introduced a methodology for the fabrication of on-chip
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(c) Image of an array of sensors wrapped around a cylindrical bar. (a)
Reproduced from (Llobera et al. 2015), Copyright 2015, with permis-
sion from Springer Nature. (b) Reprinted with permission from (Kang
et al. 2016), Copyright 2016, American Chemical Society
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Layer L
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]
Fluidic [ ]
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# Connectors

Substrate Detect
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Fig.7 a Hybrid chip-scale system combining the automated micro-
fluidic processing (automaton) and on-chip optical detection based on
the ARROW principle. Scale in the figure—1 cm. b Optical device
schematic with a PEGDA waveguide used for excitation light coming

interference filters with multiple high and low loss regions.
Interference filters, compatible with the silicon microfab-
rication techniques, possess lower autofluorescence when
compared with absorbance filters. In this work, they man-
aged to decrease the number of dielectric layers requested
for efficient working of the interference filter from more than
30 down to 3. Aerogels are materials with low-refractive
indexes, making them suitable for solid-cladding in liquid-
core optofluidic waveguides based on the principle of total
internal reflection. A comprehensive review of aerogels used
for optofluidic waveguides is presented in Ozbakir et al.
(2017).

Following the trend of scaling down by 3D integration
of various heterogeneous components, a SU-8 polymer-
based methodology was developed by Nittala and Sen
(2018). The cost-effective reported methodology allowed
integration of commercially available components in a
relatively simple way. The key element of this approach
was planarization of the layers with correctly chosen SU-8
parameters in such a way that the next layer could be
stacked using epoxy-based bonding. This method allowed
packaging a photon detector, the filters, the microfluidic
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?

from a 532 nm laser and another PEGDA waveguide used to collect
the fluorescence emission from the interrogation volume. (a) Repro-
duced from (Parks et al. 2014), Copyright 2014, with permission
from AIP Publishing. (b) CC-BY 4.0

chip, and a LED. On the other hand, a low-cost master
mold fabrication process based on a dry film photoresist
for soft lithography, and operated in standard laboratory
conditions was reported in Rodriguez-Ruiz et al. (2017).
This protocol managed to reduce by ten times the mate-
rial costs and reduced considerably the fabrication time
compared with standardized SU-8 master mold techniques.
The methodology initialized a simpler fabrication method-
ology of photonic devices. Integrated hydrogel waveguides
potential for developing wearable and implantable lab-on-
a-chip devices was evaluated by Torres-mapa et al. (2019).
They used self-aligned polyethylene glycol diacrylate
(PEGDA) waveguides, which present tunable mechanical
and optical properties, integrated via micro-molding tech-
nique into a PDMS structure to evaluate the fluorescence
response from a rhodamine 6G solution. The PEGDA
waveguides integrated into the PDMS showed high trans-
mission, minimal absorption in the visible spectrum, and
propagations losses lower than 1.1 dB/cm. Further investi-
gations on mechanical and light guiding properties during
stretching/bending are requested (see Fig. 7b).
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3.3 CMOS-based fluorescence sensing

CMOS technology revolutionized the field of micro-elec-
tronics (Shakoor et al. 2018) and it holds the promise to
do so for micro-optical sensing as well. On-chip CMOS-
integration, coupled to microfluidics for detection at the
micro-scale, was increasingly observed in the recent litera-
ture (Nakazawa et al. 2011; Choi et al. 2016; Tanaka et al.
2017; Wei et al. 2017), especially for the development of fil-
terless prototypes (see Table 4). The focusing and the filtra-
tion optics represent a barrier in the miniaturization process
(Papageorgiou et al. 2017), alternative techniques replacing
them being envisaged. The filterless discrimination between
the excitation light and the generated fluorescence light
emerged as a cost-effective, compact, and lightweight min-
iaturization method. CMOS technology introduced advan-
tages such as reduced dimensions, high sensitivity, coupled
with filtration algorithms, very low unit prices, low-power
consumption, and integrated signal processing, making it
compatible with the targeted goals of fluorescence detec-
tion device miniaturization. Until recently, charged-coupled
devices (CCDs) were largely used in image sensing, but now
CMOS image sensors seem to be more used, due to their
superior features. A CMOS image sensor is an integrated
circuit with an array of pixel sensors. Each pixel sensor con-
tains its own light sensor, an amplifier, and a pixel select
switch. The main components of a CMOS sensor are color
filters, a pixel array, a digital controller and an analog-to-
digital converter (see Fig. 8a).

Different models are available for gathering informa-
tion from pixels: RGB; hue, saturation, value (HSV); hue,
intensity, saturation (HIS); CIELab or CIExyY (Sudha-
karan 2020), all implemented at the system level. There is
an increased interest in employing the RGB model com-
bined with an image sensor or a camera to determine the
concentration of analytes (Bueno Hernandez et al. 2017).
The commercially available CMOS image sensors are usu-
ally equipped with integrated filters. Generally, the perfor-
mance of these filters is not sufficient and different filtration
algorithms are implemented, to eliminate parasitic light.
CMOS-based contact sensing coupled with time-correlated
photon counting (TCSPC) has proven to be a sound meth-
odology (Wei et al. 2017). Different strategies implementing
CMOS image sensors have been recently proposed Miriuta
et al. (2019) with good results and enough space for further
improvements. The challenges existing in combining the
integrated circuits with biological or chemical components
in lab-on-a-CMOS concept, such as thermal effects, floor-
planning, signal coupling, electrochemical effects, surface
treatments, sterilization, and microfluidic integration were
detailed by Datta-Chaudhuri et al. (2016).

One of the most critical challenges in lab-on-a-CMOS
design and fabrication represents the interaction between the

fluid samples and the chip surface, traditional wire-bonding
packaging being not compatible with the planar microfluidic
concept. Lindsay et al. (2018) developed a heterogeneous
integration solution of a CMOS sensor and a fluidic network
using wafer-level molding process. A technology enabling
monolithic integration of the read-out system within the sen-
sor for general label-free miniaturized optical detection by
integrating nanophotonic structures with CMOS photodi-
odes was reported in Shakoor et al. (2018). One-dimension
grating structures with a CMOS integrated image sensor
arrayed with photodiodes. The gratings were made of sili-
con nitride and refractive index changes were induced when
different analytes were applied. Pang et al. (2011) developed
a CMOS based detection system by integrating Fresnel zone
lenses (above described) (see Fig. 8b).

Tanaka et al. (2017) proposed a system based on charge
accumulation techniques that simultaneously allowed fil-
terless measurement of multiple low-intensity fluorescence
wavelengths (five in this work). The charge accumulation
technique involves fluorescence detection by measuring the
voltage change of a capacitor, which is proportional to the
accumulated signal charge quantity. This technique has the
capability to increase the output signal level, reducing the
noise induced by the incident light. From experiments, the
dynamic range obtained was 100:1. The filter was fabricated
by an older 2-poly, triple-well, 5 um CMOS process.

A lens-free system for breast cancer cell detection was
developed by Papageorgiou et al. (2017). It integrated
stacked CMOS metal layers above each photodiode to form
angle-selective gratings, rejecting background light. Choi
et al. (2016) presented a filterless method for the suppres-
sion of forward scattering in silicon by surface planarization,
resulting in a separation efficiency improving from 550:1 to
1250:1. This was achieved mainly due to the low roughness
of the polysilicon surface.

Plasmon enhanced fluorescence or metal enhanced
fluorescence, is a powerful amplification method used to
increase the sensitivity and shorten detection times, and is
based on the interaction between fluorophore labels that are
coupled with the confined field of surface plasmons. A com-
prehensive review of this topic can be obtained from Bauch
et al. (2014) and a detailed overview is presented in the book
of Geddes (2017). The integration of nano-plasmonics with
CMOS technology, without any other post-processing, ena-
bled the possibility to integrate large multiplexed assays on
the same chip. A detailed theoretical description of plasmon-
enhanced fluorescence coupled with CMOS technology is
found in Hong et al. (2017a).

3D copper-based nanoplasmonics components were inte-
grated within standard CMOS devices through sub-wave-
length copper-based electrical interconnect lithography
features by Hong et al. (2017a), developing a bio-sensor
with a nano-waveguide array-based filter. The sensor was
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Table 4 (continued)

Further improvements [Author’s sug-

gestions]

Analyte

Applications LOD

Achievements

References

47 zeptomoles Quantum-dots

Design methodology based on CMOS  Low-cost, fully integrated, high per-

Hong et al. (2017b)

formance, and fully scalable biosen-
sor for point-of-care applications

integrated nanoplasmonic filters,
exploiting the sub-wavelength

lithographic features of on-chip

interconnects, eliminating the need
for any post-fabrication, or external

optical elements
First fully-integrated fluorescence-

based CMOS bio-molecular sensor

with integrated nano-plasmonic

sensor

developed by implementing a 65 nm process, managing to
diminish the noise by 50 dB for a large variety of incident
angles. It comprised an assay platform, a sensor, and read-
out circuitry, making the integration of external optical com-
ponents and any other post-fabrication techniques unnec-
essary, except for the light source that was a micro-laser
diode or a LED. The optical fields could be manipulated in
a controllable manner. Within the same team, the work of
Lu et al. (2018) analyzed the possibility of photonic crystal
integration on a CMOS sensor, exploiting optical physical
unclonable functions (PUF) for a better management of the
background noise.

In Varsanik and Bernstein (2013), a plasmonic resona-
tor was designed, fabricated, and tested, proving both field
enhancement and localization to nano dimensions. The pro-
posed architecture enabled a solution for high-resolution
and low-noise detection of fluorescence within an integrated
microfluidic optical detection device. The microfluidic chan-
nel was built in a polymer on top of a glass substrate wafer.
A diffused waveguide was embedded within the glass sub-
strate, crossing the fluidic microchannel in the interroga-
tion region. The width and the depth of the microchannel
were 8 um and 200 nm, respectively, enabling an extremely
reduced interrogation volume and, by consequence, reduced
noise. Finally, the system was capable to successfully detect
20 nm sized fluorescent particles.

CMOS-based fluorescence sensing field did not ben-
efit from high-performance integrated optical filters until
recently. This situation led to the implementation of either
time-resolved techniques with synchronized sources
(Samouda et al. 2015), or externally located optical filters
and focusing optics (Lu et al. 2018). The above-mentioned
methodologies, that were recently reported, enlarged the
horizons toward more robust and compact fully-integrated
solutions aiming to solve the chip-in-the-lab dilemma (Sha-
koor et al. 2018) with further improvements. The Internet-
of-Things (IoT) field of applications requires low-power and
low-cost sensors, and here CMOS based fluorescence detec-
tion is expected to play a major role (Lu et al. 2018).

3.4 Organic electronic-based designs

Organic light-emitting diodes (OLEDs) and organic pho-
ton detectors (OPDs) are the subject of significant research
efforts and continuous improvements (see Table 5) due to
their multiple applications and advantages compared to
their inorganic counterparts (Krujatz et al. 2016). Organic
electronics introduced some unbeatable advantages, such
as direct on-chip integration, easy emission and detection,
and compatibility with flexible substrates. An OLED is a
solid-state device composed of flexible thin films of organic
molecules that emit light when subject to electricity, using
less power than current available LEDs.
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Fig.8 a CMOS image sensors in-depth working principle. b (a)
CMOS image sensor with thin layer filter coated on top, the micro-
fluidic channel, and the Fresnel zone plate (FZP) array. (b) Top
view schematic of the device with the FZP array configuration and

Currently, the OLEDs are largely used in commercially
available electronics (TVs, smartphones, etc.), being avail-
able in a large bandwidth emission spectrum. However, the
OLEDs possess lower efficiencies (around 80 1m/W) than
inorganic LEDs (higher than 200 1m/W) (Krujatz et al.
2016). For enhancing widespread OLED implementation,
the PI-SCALE project (pi-scale.eu) aims to integrate existing
European infrastructures into an “European flexible OLED
pilot line”, operating in an open access mode and serving
customers with individual product designs, validation of
upscaling concepts, and system-level flexible OLED integra-
tion. Comprehensive reviews of the latest achievements in
OLEDs used for fluorescence sensing may be found in Wil-
liams et al. (2014), Jeong et al. (2015), Krujatz et al. (2016)
and Yersin (2018). In Jansen-van Vuuren et al. (2016), recent
achievements in the field of OPDs were described, while the
last comprehensive review about the integration of fluores-
cence sensors using organic optoeletronics with microfluid-
ics (see Fig. 9a) is presented by Lefevre et al. (2015).

A fluorescence light detector combining both an organic
electrochemical cell (OLEC) and an organic photodiode
(OPD) within one microchip (see Fig. 9b, ¢) was introduced
and tested by Shu et al. (2017). Moreover, linear polarizers
were used as emission and excitation filters, enabling the
possibility to detect fluorescent targets with emission and
absorbing peaks very close to each other. The organic lay-
ers were manufactured using solution deposition process-
ing, considerably decreasing the fabrications costs. The
emission light peak of the OLEC was modified by choosing
different light-emitting polymers, enabling multiplexing.
The OLEC was used in pulsed mode to detect fluorescein
amidite, reaching a 1 uM limit of detection. The brightness
of the OLEC was up to 2800 cd/m? at a driving voltage of

@ Springer

its design parameters. (c) Scanning electron microscopy image of
the fabricated Fresnel lens. (d) Images of the fabricated laboratory
devices. Reproduced from (Pang et al. 2011), Copyright 2011, with
permission from The Royal Society of Chemistry

50 V. The brightness was not altered up to 10,000 pulses for
a 30 ms pulse width, resulting in an autonomy of 10 min.
The proposed solution proved stability and high commer-
cialization potential. Organic optoelectronics for building
compact lab-on-a-chip applications was used by Jahns et al.
(2017) who introduced two devices. For the first device, four
5 mm? OLEDs and four 5 mm? OPDs were manufactured
separately on two 25 x 25 mm? glass substrates. A dichroic
filter was used, to decrease the noise. The second device had
a cylindrical form and used a reflection system, to facilitate
the decrease of the noise and avoid additional filters.

A detailed description of the integration process of an
organic optoelectronic system within a microfluidic platform
has been presented in Poorahong et al. (2016). A system
comprising a series of blue and green OLEDs, OPDs, and
optical filters was designed, to develop a detection system
for a PDMS multi-chambered structure with 9 uL detec-
tion volumes. The 480 nm and 515 nm OLEDs, OPD, and
optical filters were manufactured individually and then inte-
grated within the microfluidic structure. The spectral width
of the OLEDs was around 87-90 nm. Their durability was
tested by applying pulses of different voltages (12 V for a
blue OLED and 18 V for a green OLED) and after some
tens of pulses, the emission intensity stayed constant. The
limited lifetime of the organic materials, especially when
high voltages are implied, limits the long-term usability. An
innovative OPD manufacturing solution, enabling a 14,000 h
lifetime under continuous operation was presented by Kielar
et al. (2016).

Thin film transistor array technology, inspired by the flat
panel display and X-ray image industry, is a new approach
used to enable low-cost multi-biomarker detection. Smith
et al. (2014) introduced a miniaturized fluorescence-based



65

Page 21 of 28

(2020) 24:65

Microfluidics and Nanofluidics

uo1o)3p JO JIWI] Y}

pue [euSIs oY) Jo JO1ABYRq Y}

QUIWLINAP 0} sIsATeur JoylIny Jur
-wtoyIad ‘wro)sAs puodas ay) Joq

€L MO[[3A POV

— (JAV) SMprure uredsasony

(wysAs 1s1y) INU 0TS

KIADISuas y3iy e

Aﬁﬁ Az\mv Iorem Ul NV [IIM SIOSUSS 90UddsaIony a[qe

JAUN

-sodsip pue 9[qerrod )s0d Mo

Sw)sKs
dryo-e-uo-qef Juae-nnu
‘pezrmerurwa 1oy Jurstwold
PUE J[qR[BOS SEM JI ‘SIANY JO
oSesn paproae J] “erensqns
9[3uIs & U0 A1OWO0a3 [BOLIP
-urAs e oyul pajeIdaur ddO
pue 10 (WSS puodeg
sojens
-qns 9eredas uo pajersayur
ddO pue Q10 :UWISAS ISIL]
PajENSUOWP
pue paqrIdsap sarSo[opo
-[jouw UoNeOLIqe] JIAY) pue
SUSISOp UOTOIP 20UISAIONY
diyo-e-uo-qey oruedio om],
QOTAP UOT}O)IP JUISAION]
SIPIMPOIDTW © YIIM J0JO)IP
uojoyd orue3io pue apoIp
Surprwo Jy31| orue3Io passad
-o1d uonnos jo uonei3aur
[NJSSINS JO UONRIISUOW(]
digo
sse[3 oIpIny 0o Ay} 0JUO
papnjour a1om s1ozLrejod reaury
PAIUALIO A[[EUOTOY)I0 OM],
s1owAjod Sumwuo
1317 JuarayIp Sunosres £q
payIpowr AJIsea A[oATIR[I 9q
prnod yead 31| uoIssTw? Y],
90IN0S
JySI] UOTILIIOXA JSOJ-MO] B Sk
PAIENSUOWIP PUL PIdNPOLUL
1814 sem HHTO 2n[q 24 L
J1030939pojoyd
passao01d uonnjos A[[nj &
pue ‘001mos Y31 passeooxd
uonnjos A[[nJ & YIIm ‘W)sAs
SuIsuas Ju20saIONY JIPINYOIIA

(L100) 'Te 10 suyer

(L100) Te 10 nys

[suonsa33ns
s Joyiny| sjuowasoxdwr 1oyiIn,g

AATeuy

aol

suonjeorddy

SJUQWIOAIYOY

SQOUQIJY

Uo199)ap 29uddsatony 10j sayoeoidde diyo-uo-spremo) susisop-paseq S1u0II[ JTUeSIO JUISN SWIISAS JIPINPJOIOIA G d|qel

pringer

a's



(2020) 24:65

sajens
-qns 194 peeod-Q.L] 0o
(wu Q1) swyy ury) oruesio
Jjo uonisodep enyuonbas

Kq pajeoriqej a1om s 10

wo)sAs SIsougerp
(DOJ) 2ed-jo-jutod diyo-e

diyo-uo poyer3ajur soyensqns
onserd uo peyestiqey S IO

- 10p wmueng) (€=N/S) INU € -uo-qe[ d[qesodsIp )s00-mo] U3 jusosatoydsoyd wy uryy, (S107) [0S PUL UBWEIENUSA

Microfluidics and Nanofluidics

Page 22 of 28

65

uoniq

Nu¢o

uonerado

SNONUNRUOd I3puUn [ 000 |
JIOAO JO SWITII] YIIM 9POIPOIoYJ

AT

Souof (0 X 17°€ JO ANA1Oa)op

B pUE ‘M V TE0 JO KA

-uodsare ‘. _wo yu [¢°( se

MO[ se K)ISUSp JULIND JIep

B Ul PJ[NSal ‘UONeILIqe] J)

Surms posn sdoys Jurpeouue

amyeroduwd)-mo[ om) pue
s19Ae] passad01d-uonnjos a1y,

soporpojoyd paseq-uodIfIs Jo

douewoyred ay) Suryoeoidde

‘A3orouyo9y urstwoid s1yy jJo

UOTIRZI[BIOIOUWIIOD [NISS0INS

10} A)[IQRIS JO [9AQ] 2annad

901n0s 1YSI] UONLIIOXD -wod & Jurssassod se $10309)
pojeI3uI-A[[ny 9ANOYR-)s0)  -opojoyd oruesIo jensuowa]

SINdd

ur sanbruyo9) Aydei3oyry 3jos
prepue)s ursn pajeotiqey sdigo
JIPINPOIDTW YIIMm PajerSour
‘P2IRIISUOWIAP UOIIIIIP 20U
-sarony 10§ SAJO Pue SAA 10

uonodjep uonnfiod 19jepn Jo A3ojopoyow uonesLIqe,]

[suonsa33ns
s Joyiny| sjuowaroxdwr Ioyyin,g

AATeuy

ao1

suonjeorddy SIUSUIAAIYOY

(9102) 'Te 10 Te[ary]

(9102) ‘Te 12 Suoyeiood

(ponunuoo) g sjqey



Microfluidics and Nanofluidics (2020) 24:65

Page230f28 65

Vsl

Lumo| "

Anode o

ITO b :oﬂlymer/ small molegute:
(a) /1/

Excitation
Filter

Fig.9 a Generic illustration of the fluorescence optofluidic detection
based on organic electronics. b Schematic representation of OLEC
excitation and OPD detection system. (a) OPD. (b) Linear polarizer
filter. (c) Glass microfluidic chip. (d) Blue OLEC. (e) fully-processed
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Fig. 10 Lab-on-a-chip sensing architecture based on OLED display
and photodiode active matrix technology for point-of-use diagnosis of
multiple diseases (Smith et al. 2014)

lab-on-a-chip sensing architecture (see Fig. 10) based on
an OLED display and photodiode active matrix technology
for point-of-use diagnosis of multiple diseases or patho-
gen markers in a cost-efficient disposable configuration.
A straightforward concept, enabling a new approach using

Microfluidic
Chamber

Cathode

Emission
Filter Polymer/ small moleéules

blue OLEC. c¢ Fabricated optofluidic system. (a) Reproduced from
(Lefevre et al. 2015), Copyright 2015, with permission from Elsevier.
(b) and (c) Reproduced from (Shu et al. 2017), Copyright 2017, with
permission from The Royal Society of Chemistry

matrix active OLED and photodiode array technology for
the multi-target analysis was implemented and tested. The
8 % 8 biorecognition array of 64 pixels based on this technol-
ogy had an area lower than 2 x 2 mm? and was able to work
with a 100 pL volume of fluid. The array-based OLED was
formed from multiple light-emitting elements (pixels) which
were individually activated, to emit light at specific wave-
lengths and to enable multiple target detection. The same
group proposed in Katchman et al. (2016) a high-density
fluorescence, programmable, multiplexed recognition com-
pact miniaturized device for point-of-care molecular diag-
nostics. The OLED technology was combined with protein
microarray technology and 10 pg/mL limit of detection was
achieved for human IgG.

4 From current challenges to a possibly
ideal concept: discussion

It has been suggested that one of the reasons for which

micro total analysis systems failed yet to cross the border
from research to commercial application is the lack of a
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well-established design methodology (Volpatti and Yetisen
2014). Therefore, microfluidic devices still deploy compli-
cated and sophisticated optical equipment to enhance fluo-
rescence detection (Matteucci et al. 2015). This has partly
been due to the reliability of detection still being too inad-
equate for meaningful results to be interpreted. Successful
translation of micro-total-analysis systems from the labora-
tory to the market rely on the ability to integrate the detec-
tion components on-chip (Watts et al. 2012; Mohammed
et al. 2015). The efficiency of the microfluidic processes
taking place within the microchannels is often strictly
related to the precise control of specific parameters, such
as hydraulic diameter, and the memory effects (molecule
adsorption within the walls structure affects the sensitivity
and reliability of the sensor). Thus, working with fluids at
microscale for sensing applications involves complexity. By
consequence, there are still many issues which have to be
solved regarding the repeatability, the portability, the ease
of use and the sensitivity, the fabrication time, and the cost,
before making these systems more advantageous than the
classical world spread analysis systems (Wolfbeis 2013;
Babikian et al. 2017). Currently, it can be emphasized that
the optical and fluidic circuits were successfully miniatur-
ized, while the entire system miniaturization is still chal-
lenging, more attention having to be focused on the system
integration.

Some general parameters can be used for the quantifi-
cation of the performances of a fluorescence-based sensor:
fabrication cost, sensitivity, repeatability, multiplexing,
auto-calibration, selectivity, response time, long-term sta-
bility, and autonomy. Among all the presented prototypes,
some perform in one or several of these above-mentioned
criteria, but none in all. While off-chip approaches achieved
a high degree of maturity, very low prices and good per-
formance, a multitude of methods are still tested for strat-
egies towards on-chip integration. The microstructured
optical fibers involving hollow core Bragg fibers refreshed
the way optical fibers are implemented within fluorescence

Light source
Filiration
Focusing optics
Collection oplics

Filtration

Phaton detector

Fig. 11 Fluorescence sensing: general integration scheme

@ Springer

detection systems, proposing a design strategy integrating
into one fiber the interrogation area, denoted the collector,
the delivery channel, and the filter. The microfluidics-PCB
concept managed to integrate microfluidics with optics and
electronics in a monolithic manner, opening a promising
development path. The printed circuit boards were used for
both support of electronic components and microfluidic
parts. Broad implementation of CMOS sensors, coupled
with signal processing algorithms to filtrate and improve
the sensitivity, could be observed in the recent literature.
The CMOS technology coupled with contact sensing and
time-correlated photon counting (TCSPC) emerged as a
sound technology. It avoids usage of filtration and focusing
optics. Nano-plasmonics coupled with CMOS technology
managed to create enhanced fluorescence quantification on
platforms with multiplexing capabilities. Organic electron-
ics possess a huge potential, which is not fully exploited,
both light emitting sources and photon detectors being
already largely developed and commercially available. It
offers unique advantages for fluorescence detection, such
as flexibility of the emitting and detection layers, provid-
ing the possibility to develop flexible sensors. The tuning
of different layers allows readout of a multitude of differ-
ent wavelengths, enabling multiplex detection. Compared
with LEDs, organic light-emitting diodes still possess lower
efficiency, but recent achievements promise to improve this
aspect (Krujatz et al. 2016).

It is obvious that further miniaturization strategies should
focus on simplification of the traditional detection approach
by identifying micro-fabrication and design architectures
to replace/simplify the implementation of the intermediate
light manipulation steps. A possible solution addressing this
topic is the implementation of an advanced pattern recog-
nition algorithm and/or selecting a more advanced photon
detector, as some authors are suggesting (Babikian et al.
2017; Shin et al. 2017). Further development of fluorescence
optical sensors should envisage strategies involving all the
elements as they are illustrated in Fig. 11. This is mandatory

[  Mot-replaceable components
B Possible replaceable components

Outlet
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for solving the chip-in-the-lab dilemma that refers to the lack
of portability, operation simplicity, and reliability outside of
the laboratory of the majority of the miniaturized analytical
systems.

Once the miniaturization dream of chemical and biologi-
cal sensing would be achieved, the following step is easy
to be anticipated. Large sensing networks coupled with Al
and IoT would allow rapid and in-time measurement of the
presence of specific indicators identified in small amounts
of body fluids, better monitoring pollution, and many other
applications.
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