34 research outputs found

    Effect of α+-thalassaemia on episodes of fever due to malaria and other causes: a community-based cohort study in Tanzania

    Get PDF
    It is controversial to what degree α(+)-thalassaemia protects against episodes of uncomplicated malaria and febrile disease due to infections other than Plasmodium. In Tanzania, in children aged 6-60 months and height-for-age z-score < -1.5 SD (n = 612), rates of fevers due to malaria and other causes were compared between those with heterozygous or homozygotes α(+)-thalassaemia and those with a normal genotype, using Cox regression models that accounted for multiple events per child. The overall incidence of malaria was 3.0/child-year (1, 572/526 child-years); no differences were found in malaria rates between genotypes (hazard ratios, 95% CI: 0.93, 0.82-1.06 and 0.91, 0.73-1.14 for heterozygotes and homozygotes respectively, adjusted for baseline factors that were predictive for outcome). However, this association strongly depended on age: among children aged 6-17 months, those with α(+)-thalassaemia experienced episodes more frequently than those with a normal genotype (1.30, 1.02-1.65 and 1.15, 0.80-1.65 for heterozygotes and homozygotes respectively), whereas among their peers aged 18-60 months, α(+)-thalassaemia protected against malaria (0.80, 0.68-0.95 and 0.78, 0.60-1.03; p-value for interaction 0.001 and 0.10 for hetero- and homozygotes respectively). No effect was observed on non-malarial febrile episodes. In this population, the association between α(+)-thalassaemia and malaria depends on age. Our data suggest that protection by α(+)-thalassaemia is conferred by more efficient acquisition of malaria-specific immunity

    Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands.

    Get PDF
    BACKGROUND: The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. METHODS: A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. RESULTS: Malaria antibody prevalence strongly related to altitude (1350-1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. CONCLUSION: Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission

    The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. METHODS AND FINDINGS: Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June-6 July 2012) and 16 wk (21 August-10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI -1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates (p = 0.024), but not 16 wk post-intervention (p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk (p = 0.27) or 16 wk post-intervention (p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons. CONCLUSIONS: Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear. TRIAL REGISTRATION: ClinicalTrials.gov NCT01575613

    Extended Malaria Parasite Clearance Time in African Children Following Artemisinincombination Therapy Enhances Transmission\ud to Anopheles Mosquitoes

    Get PDF
    Artemisinin resistance was recently shown to have spread or emerged on the Thailand/Myanmar border. Evidence is accumulating that the parasite clearance time after artemisinin-based combination therapy (ACT) is increasing in settings in Asia and Africa. It is currently unknown if an extended parasite clearance time after ACTs has consequences for the individual patient or confers a higher malaria transmission potential. 298 children in Mbita, Western Kenya, with uncomplicated falciparum malaria were randomized to artemether-lumefantrine (AL, n = 153) ordihydroartemisinin-piperaquine (DP, n = 145). Parasite carriage post-treatment was determined by microscopy and qPCR, gametocyte carriage by quantitative nucleic acid sequence based amplication. Infectiousness to mosquitoes was determined by mosquito membrane feeding assays. Both drugs were efficacious as judged by standard trial outcomes. Sub-patent residual parasitaemia on day 3 was detected by qPCR in 36.11% (95% CI 25.11 - 48.29) of children treated with AL, and in 30.16% (95% CI 19.23 - 43.02) of children treated with DP. After adjustment for age, treatment arm and enrolment parasite density, children with an extended parasite clearance time were significantly more likely to have microscopically detected recurrent parasitaemia during follow-up (Odds Ratio: 19.51, 95% CI 5.24 - 72.71, p < 0.001). Children with an extended parasite clearance time were also more likely to be infectious to mosquitoes (Odds Ratio 2.76; 95% CI 1.14 - 6.67, p = 0.02) and gave rise to a higher oocyst load in mosquitoes (Incidence Rate Ratio 2.80, 95% CI 1.49 - 5.24, p = 0.001). Our findings indicate that an extended parasite clearance time after ACTs has consequences for the individual patient and for the population at large due to higher transmission potential. The high prevalence of residual subpatent parasitaemia after treatment may be due to novel parasite genotypes with reduced drug sensitivity, inadequate population-level immunity, or the higher sensitivity of qPCR for detection of persisting parasites.\u

    Protection against Diarrhea Associated with Giardia intestinalis Is Lost with Multi-Nutrient Supplementation: A Study in Tanzanian Children

    Get PDF
    Giardia intestinalis is a well-known cause of diarrhea in industrialized countries. In children in developing countries, asymptomatic infections are common and their role as cause of diarrhea has been questioned. In a cohort of rural Tanzanian pre-school children, we assessed the association between the presence of Giardia at baseline and subsequent diarrhea risk. The study was conducted in the context of a randomised trial assessing the effect of supplementation with zinc and other micro-nutrients on malaria, and half of the children daily received a multi-nutrient supplement. Surprisingly, we found that the presence of Giardia at baseline was associated with a substantial reduction in diarrhea risk. Multivariate statistical analysis showed that this protection could not be explained by differences in age or walking distance to the dispensary between children with and without Giardia. Because we cannot exclude that children differed in other (unmeasured) characteristics, we cannot draw firm conclusions about the causality of the observed association, but our findings support the view that the parasite is not an important cause of diarrhea in highly endemic settings. Striking was that the Giardia-associated protection was lost when children received multi-nutrients. Our data do not provide information about the mechanisms involved, but suggest that multi-nutrients may influence the compositionor pathogenicity of intestinal biota

    Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya

    Get PDF
    Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal.; Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters.; The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period.; All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions

    Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial.

    No full text
    BACKGROUND: Artemisinin-based combination therapy (ACT) reduces the potential for malaria transmission, compared with non-ACTs. It is unclear whether this effect differs between ACTs. METHODS: A total of 298 children (age, 6 months to 10 years) with uncomplicated falciparum malaria were randomized to artemether-lumefantrine (AL; n = 153) or dihydroartemisinin-piperaquine (DP; n = 145) in Mbita, a community in western Kenya. Gametocyte carriage was determined by molecular methods on days 0, 1, 2, 3, 7, 14, 28, and 42 after treatment initiation. The gametocyte infectiousness to mosquitoes was determined by mosquito-feeding assays on day 7 after beginning therapy. RESULTS: The cumulative risk of recurrent parasitemia on day 42 after initiation of treatment, unadjusted by polymerase chain reaction findings, was 20.7% (95% confidence interval [CI], 14.4-28.2) for AL, compared with 3.7% (95% CI, 1.2-8.5) for DP (P < .001). The mean duration of gametocyte carriage was 5.5 days (95% CI, 3.6-8.5) for AL and 15.3 days (95% CI, 9.7-24.2) for DP (P = .001). The proportion of mosquitoes that became infected after feeding on blood from AL-treated children was 1.88% (43 of 2293), compared with 3.50% (83 of 2371) for those that fed on blood from DP-treated children (P = .06); the oocyst burden among mosquitoes was lower among those that fed on blood from AL-treated children (P = .005) CONCLUSIONS: While DP was associated with a longer prophylactic time after treatment, gametocyte carriage and malaria transmission to mosquitoes was lower after AL treatment. CLINICAL TRIALS REGISTRATION: NCT00868465

    Is asymptomatic malaria really asymptomatic? Hematological, vascular and inflammatory effects of asymptomatic malaria parasitemia

    No full text
    Asymptomatic malaria infections are highly prevalent in malaria endemic regions and most of these infections remain undiagnosed and untreated. Whereas conventional malaria symptoms are by definition absent, little is known on the more subtle health consequences of these infections. The aim of our study was to analyze the hematologic, vascular and inflammatory effects of patent and subpatent asymptomatic malaria parasitemia in children and adults on the Indonesian island Sumba. Both children and adults with parasitemia had increased high-sensitive C-reactive protein levels compared to aparasitemic individuals. In addition, children, but not adults with parasitemia also had lower platelet counts and Hb levels and higher levels of von Willebrand factor and platelet factor-4, markers of endothelial and platelet activation, respectively. These findings suggest that asymptomatic malaria infections have subtle health consequences, especially in children, and should be regarded as potentially harmful
    corecore