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Chris Drakeley3, Jonathan Cox3 and Teun Bousema1,3*

Abstract 

Background: The East African highlands are fringe regions between stable and unstable malaria transmission. What 
factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been 
extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify 
factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serologi-
cal outcomes.

Methods: A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 
100 km2 area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and 
prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and 
individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-
resolution satellite images.

Results: Malaria antibody prevalence strongly related to altitude (1350–1600 m, p < 0.001). A strong negative asso-
ciation with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes 
and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite preva-
lence was associated with age, bed net use, house construction features, altitude and topographical wetness index. 
Antibody prevalence was associated with all these factors and distance to the nearest water body.

Conclusion: Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. 
The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria 
antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serologi-
cal markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.

Keywords: Malaria, Plasmodium falciparum, Hotspots, Heterogeneity, Transmission, Elimination, Risk-factors, Serology, 
Polymerase chain reaction
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Background
Infectious disease transmission often displays heteroge-
neity of transmission in space and time [1]. Malaria forms 
no exception to this and in the last decade, considerable 

efforts have been made to improve estimates on the global 
and local burden of malaria transmission [2, 3, 4]. At a 
global scale, Plasmodium falciparum transmission is 
driven by temperature and aridity that limit the distri-
bution and competence of Anopheles vectors [5]. How-
ever, at a micro-epidemiological scale in endemic areas, 
numerous factors influence malaria transmission dynam-
ics including distance to the nearest mosquito breeding 
site [6–12] and house construction features [6, 8, 9, 13, 
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14]. Individual malaria risk may also be associated with 
human genetic factors [7, 8, 15] or with behavioural fac-
tors [6–8, 13] including those relating to occupation [16] 
and travel [17]. Variations in these factors over a small 
area can result in spatially heterogeneous transmission, 
resulting in foci or hotspots of malaria infection [2, 18]. 
Targeting hotspots may be a highly efficacious approach 
for malaria control [1, 19]; the operational feasibility of 
such targeted interventions depends on the stability of 
malaria hotspots in space and time [2, 20] and the ability 
to readily detect them.

In Africa, highland fringe areas have traditionally been 
associated with unstable malaria transmission, epidem-
ics and unpredictable disease patterns [21, 22]. Over 
recent decades, however, it appears that this picture has 
been changing [23] with studies describing instances of 
relatively stable malaria transmission in the Kenyan high-
lands [24, 25], characterized by age-dependent acquisi-
tion of anti-malarial immunity [24, 26] and a substantial 
reservoir of asymptomatic malaria infections [27]. These 
studies were based on passively detected malaria cases 
[24, 25] and active surveillance in children [26, 27]; a 
more comprehensive, community-based, assessment of 
parasitological and serological outcomes in all age groups 
is needed to establish the macro- and micro-epidemi-
ology of P. falciparum and to identify factors associated 
with exposure and infection so that more targeted and 
specific interventions can be locally deployed.

Methods
Study site and sampling
This study was conducted in highland fringe locali-
ties (1350–1600  m altitude) in Rachuonyo South Dis-
trict, western Kenya (Fig.  1). The main malaria vectors 
in the area are Anopheles funestus and Anopheles gam-
biae sensu lato (s.l.) [28]. Malaria transmission is sea-
sonal, with two peaks in malaria cases reflecting the 
bimodal rainfall pattern, with the heaviest rainfall typi-
cally occurring between March and June and a smaller 
peak between October and November each year. The 
study procedures have been described in detail elsewhere 
as part of an online clinical trial protocol [29]. Briefly, a 
5 × 20 km (100 km2) area was selected and divided into 
400 cells of 500 × 500 m that were further subdivided in 
four sub-cells of 250 × 250 m. All structures in the area 
were geo-located manually in ArcGIS [ArcGIS 9.2; Envi-
ronmental Systems Research Institute, Redlands, CA, 
USA] using contemporaneous high-resolution satellite 
data [Quickbird; DigitalGlobe Services, Inc., Denver, CO, 
USA]. Where possible, a maximum of 16 compounds 
were chosen from each 500 ×  500  m cell. The aim was 
to obtain measurements from ≥50 individuals per 
500 × 500 m and sampling of individuals was guided by 

pre-defined age strata (≤5 years; 6–10 years; 11–15 years; 
16–25 years and >25 years) to maximize the discrimina-
tive power of serological markers of exposure [30]. To 
ensure maximum geographical coverage, at least one 
compound was selected from each 250 × 250 m sub-cell 
while the number of compounds selected from each of 
the 250 × 250 m sub-cells was weighted by the density of 
structures in each sub-cell.

The survey was carried out in 2011, during what is 
considered to be the main malaria transmission sea-
son, between June and July. After initial consent dur-
ing enumeration, participating compounds were visited 
and the name, gender, age, residency and travel history, 
use of insecticide-treated nets (ITNs), indoor residual 
spraying (IRS) in the past 12 months and sleeping times 
of each compound member were recorded. All com-
pounds where at least one adult (>20  years) and one 
child (<15  years) were permanent residents (defined as 
sleeping regularly in the structure) qualified for enrol-
ment during the survey. The axillary temperature of 
each compound member was measured by digital ther-
mometer. For all febrile individuals a rapid diagnostic 
test [RDT; Paracheck®, Orchid BiomedicalSystems, Goa, 

Fig. 1 The study area in Western Kenya. The study area comprised a 
5 × 20 km rectangle in Rachuonyo South District, Nyanza Province
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India] detecting P. falciparum-specific histidine rich 
protein-2 was performed. A single finger prick sample 
was taken for haemoglobin (Hb) measurement using a 
HemoCue photometer [HemoCue 201+, Angelholm, 
Sweden] and three droplets of blood transferred onto a 
filter paper [3MM Whatman, Maidstone, UK] for serum 
and DNA [31]. All individuals with an Hb ≤11 g/dL were 
given haematenics; individuals with an Hb ≤6 g/dL were 
accompanied to a nearby health centre for further care. 
Febrile individuals who were parasitaemic by RDT were 
given artemether-lumefantrine [AL, Coartem®, Novartis, 
Switzerland]; women of child bearing age who were RDT 
positive were assessed for pregnancy and offered a preg-
nancy test if deemed appropriate. Febrile children below 
6 months of age and pregnant women with malaria were 
referred to the nearest health facility for full assessment 
and treatment.

PCR and serology
A combined extraction of DNA and elution of antibod-
ies was performed on the samples collected, as described 
elsewhere [31]. Antibodies against P. falciparum apical 
membrane antigen 1 (AMA-1) and merozoite surface 
protein 119 (MSP-119) were measured in all samples by 
ELISA [32, 33]. Parasites were detected by nested PCR 
targeting the 18S rRNA gene [31, 34]. For logistical rea-
sons, PCR was performed on a subset of all available 
samples (12,912/16,381).

Geographical information
Altitude data for study compounds were derived from a 
high-resolution digital elevation model (DEM; ASTER 
GDEM). These DEM data were also used to derive a 
topographic wetness index (TWI) using the method 
of Cohen et  al. [35]. Aggregated TWI estimates were 
derived for a 500 m circular window around each partici-
pating compound. Locations of rivers and streams were 
initially estimated using topographic modelling of DEM 
data and were later refined manually using Quickbird sat-
ellite data. The number of digitised structures within a 
500 m circular window of each compound was used as a 
proxy for population density.

Statistical analysis
Broad patterns of transmission intensity were described 
by fitting age-seroprevalence curves [32, 36] to samples 
collected from populations residing at different alti-
tude bands 1350–1449 m, 1450–1499 m, 1500–1549 m 
and 1550–1641  m and quantifying parasite preva-
lence and antibody prevalence in 10  m altitude bands. 
For quantifying transmission intensity at a finer geo-
graphical scale, two individual level measures of trans-
mission intensity were used: (1) combined antibody 

prevalence, i.e. seropositivity for AMA-1 and/or MSP-
119; and (2) PCR-detected parasite prevalence. Corre-
lations between both metrics were determined using 
a Chi square test and hypothesis testing with signifi-
cance determined where p < 0.05 and odds ratios (OR) 
and corresponding 95 % confidence intervals were cal-
culated. Potential factors associated with antibody 
prevalence or parasite prevalence were explored using 
multivariate logistic regression models accounting for 
correlations between observations from the same com-
pound. In these models, an equal correlation model 
(exchangeable) was used to specify the within-house-
hold correlation structure. All univariate analyses were 
adjusted for clustering of observations from the same 
household and age but no other factors. Adjustment for 
age was performed because this was a very important 
determinant of both parasite prevalence and antibody 
prevalence. For multivariate models a forward selection 
method was used, using a p value of 0.05 to retain vari-
ables in the model. All analyses were performed using 
Stata [v. 13, StataCorp].

Ethical considerations
This study was approved by the ethical committees of 
the London School of Hygiene and Tropical Medicine 
(LSHTM 5721) and the Kenya Medical Research Insti-
tute (SSC 1802 & SSC2163). Approval was sought from 
district medical officers, local chiefs and communities. 
Individual informed consent was sought from all partici-
pants or guardians of those less than 18 years old by sig-
nature or a thumbprint accompanied with the signature 
of an independent witness. Assent was also sought from 
children above 13 years of age. As defined in the Kenya 
national guidelines, participants below 18  years of age 
who were pregnant, married, or a parent were considered 
“mature minors” and consented for themselves.

Results
Characteristics of the study population
In total 17,503 individuals were sampled, coming from 
3213 compounds across a 100 km2 study area. The major-
ity of individuals resided within a narrow altitude band 
of 1400–1550  m (92.5  %; 16,167/17,478). The median 
number of individuals per compound was 5 (interquar-
tile range 3–7, range 1–29). As reported recently, PCR 
detected parasite prevalence was 21.2  % (738/3476) 
in children ≤5  years of age, 26.1  % (609/2337) in chil-
dren aged 6–10  years, 24.8  % (462/1403) in children 
aged 11–15 years, 19.2 % (374/1574) in individuals aged 
16–25  years and 14.6  % (480/3286) in individuals aged 
>25 years [37].
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Altitude and malaria risk
The proportions of individuals with fever, clinical malaria 
(a positive RDT in combination with temperature 
≥37.5  °C), parasites detected by PCR, malaria-specific 
antibody responses (Fig.  2) and anaemia (Hb <11  g/gL) 
were all negatively associated with increasing altitude 
(Table  1; p  <  0.001 for all comparisons). The median 
age of individuals diagnosed with clinical malaria was 
6 years (interquartile range 3–10 years), although 12.5 % 
(37/295) individuals with clinical malaria were >15 years 
of age (range 0–46  years); 93.2  % (2481/2663) of PCR-
detected malaria infections were sub-clinical. The mean 
age of individuals with clinical malaria was not associated 

with altitude (p = 0.40). When altitude was categorized 
in bins of 10 m, there was a strong negative association 
between altitude and PCR parasite prevalence (Fig.  3a; 
r =  0.92, p  <  0.0001) and malaria antibody prevalence 
(r =  0.92, p  <  0.0001). Age-seroprevalence curves were 
fitted for antibody responses to MSP-119 and/or AMA-1 
for the four altitude bands and indicated a clear gradual 
decline of the seroconversion rate with increasing alti-
tude (Fig.  3b). There are no apparent observed ‘steps’ 
in age-seroprevalence curves that can indicate changes 
in exposure due to intervention and/or age-associated 
behavioral changes patterns such as travel to malaria 
endemic regions outside the area of residence [38].

Fig. 2 Maps representing altitude, spatial variation of nPCR and antibody prevalence in the study area Western Kenyan highlands Rachuonyo 
South District, Nyanza Province. A Detailed overview of the altitude in the study area. B Average nPCR prevalence in 250 × 250 m zones. C Average 
combined seroprevalence (for AMA-1 or MSP-119) in 250 × 250 m zones
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Micro‑epidemiological patterns in malaria transmission 
intensity
There was considerable inter-compound variation in anti-
body prevalence and PCR parasite prevalence. In some 
compounds no members were antibody positive (6.6  % 
of all compounds with ≥three sampled inhabitants, 
178/2709) or PCR parasite positive (49.6  %, 1239/2496) 
while for other compounds ≥80 % of all compound mem-
bers were antibody (24.1  %, 652/2709) or parasite posi-
tive (5.1  %, 126/2496). Malaria antibody prevalence and 
parasite prevalence were strongly correlated at an indi-
vidual level (OR 1.94, 95 % confidence interval 1.77–2.13, 
p < 0.001) [37]. This association was apparent for all age 
groups but was strongest for children below 6–10 years 
of age (OR 3.16, 95 % CI 2.58–3.86, p < 0.001) and weak-
est for adults above 25  years of age (OR 1.45, 95  % CI 
1.15–1.83, p = 0.002).

In univariate analysis, individual-level parasite preva-
lence and antibody prevalence was associated with age. 
When adjusting for age, the following factors were asso-
ciated with parasite prevalence and antibody prevalence: 
the presence of eaves in the sleeping room, reported 
bed net use, construction of the sleeping room walls 
with mud, distance to water, altitude, the proportion of 
parasite positive individuals within a 500 m radius of the 
compound and the proportion of malaria antibody posi-
tive individuals within a 500 m radius of the compound 
(Table  2). In a multivariate model that was constructed 
using forward selection of variables, nPCR parasite 
prevalence was negatively associated with bed net use, 

altitude and maximum TWI, and positively associated 
with mud walls, the presence of open eaves (Table  2). 
Similarly, malaria antibody prevalence was negatively 
associated with bed net use, distance to water and alti-
tude, and positively associated with the presence of open 
eaves and minimum TWI (Table  2). Reported travel-
ling in the previous 3  months was not associated with 
individual-level malaria risk. At all altitudes, including 
the highest altitude band with the lowest level of infec-
tion [8.1  % (54/664)], there were compounds where 
≥80  % of inhabitants were parasite positive. The pro-
portion of compounds with parasite prevalence ≥80  % 
was 7.6  % (68/896) at 1350–1449  m, 5.4  % (56/1041) at 
1450–1499 m, 4.8 % (35/733) at 1500–1549 m and 2.3 % 
(3/128) at >1550 m (test for trend, p = 0.002). High-risk 
compounds were characterized by mud walls of sleep-
ing structures (OR 1.94, 95  % CI 1.00–3.79, p =  0.05), 
a higher PCR parasite prevalence in the surrounding 
community (OR 1.07, 95 % CI 1.05–1.09, p < 0.001) and 
a higher minimum TWI (OR 2.60, 95  % CI 1.37–4.95, 
p = 0.004).

Discussion
This study, conducted in the Kenyan highlands, shows the 
occurrence of ongoing stable malaria transmission across 
an altitudinal range of 1350–1600  m, characterized by 
marked spatial heterogeneity. The age-dependent acqui-
sition of malaria antibodies, strong correlation antibody 
prevalence and current parasite prevalence, along with 
the considerable asymptomatic reservoir of P. falciparum 

Table 1 Characteristics of participants in the cross-sectional survey

a Clinical malaria is defined as fever with a positive RDT with measured temperature > 37.5 °C
b Prevalence of antibodies against P. falciparum MSP-119 and/or AMA-1

1350–1449 m 1450–1499 m 1500–1549 m 1550–1650 m Total

Number of participants (number of com-
pounds)

5424 (1108) 6363 (1235) 4579 (816) 839 (140) 17,503 (3213)

Age,  % (n/N) (years)

 <5 26.4 (1429/5424) 27.0 (1791/6636) 27.1 (1239/4579) 27.7 (232/839) 26.9 (4701/17,503)

 6–10 18.9 (1024/5424) 18.1 (1202/6636) 18.0 (822/4579) 19.4 (163/839) 18.4 (3215/17,503)

 11–15 15.2 (823/5424) 13.9 (923/6636) 15.0 (685/4579) 14.3 (120/839) 14.6 (2552/17,503)

 16–25 13.7 (744/5424) 15.3 (1018/6636) 14.8 (677/4579) 16.5 (138/839) 14.7 (2579/17,503)

 >26 25.9 (1404/5424) 25.7 (1702/6636) 25.3 (1156/4579) 22.2 (186/839) 25.5 (4456/17,503)

Fever,  % temperature > 37.5 °C,  % (n/N) 4.0 (216/5423) 3.1 (204/6631) 2.5 (116/4575) 1.3 (11/839) 3.1 (547/17,468)

Clinical malaria,  % (n/N)a 2.3 (126/5423) 1.8 (120/6631) 1.1 (48/4575) 0.12 (1/839) 1.7 (295/17,468)

Parasite prevalence,  % PCR positive (n/N) 27.2 (1111/4083) 19.6 (900/4599) 16.7 (592/3548) 8.1 (54/664) 20.6 (2663/12,912)

Antibody prevalence,  % positive (n/N)b 62.6 (3108/4967) 58.0 (3623/6252) 48.3 (2104/4361) 31.7 (246/777) 55.5 (9092/16,381)

Anaemia,  % (n/N)

 Severe (<6 g/dL) 0.6 (30/5282) 0.7 (46/6391) 0.4 (19/4366) 0.2 (2/818) 0.6 (97/16,878)

 Moderate (<8 g/dL) 3.1 (163/5282) 3.4 (214/6391) 2.6 (112/4336) 2.0 (16/818) 3.0 (505/16,878)

 Mild (<11 g/dL) 26.0 (1374/5282) 23.0 (1472/6391) 21.5 (938/4336) 20.2 (165/818) 23.4 (3954/16,878)
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infections in all age groups, suggests that malaria trans-
mission is relatively stable in the study setting.

Much of the highlands of East Africa represent fringe 
regions between stable and unstable malaria transmis-
sion; seasonal and spatial patterns in malaria transmis-
sion are affected to some degree by annual variations in 
rainfall but primarily by ambient temperature [39]. The 
notion that malaria is largely absent in areas higher than 
1500  m [40] has been challenged by findings of a large 
asymptomatic reservoir of malaria infections at alti-
tudes [27] and an age-dependent acquisition of clinical 
immunity to malaria infections in highland communi-
ties [24]. In this study area area at 1350–1600  m above 
sea level, the special epidemiology of malaria infections 
was determined and markedly heterogeneous malaria 

transmission was observed. This is commonly observed 
in areas of low endemicity [2, 20, 25] and heterogeneity 
in clinical malaria cases has previously been reported 
in the Kenyan highlands [25]. This study adds detail to 
previous findings by describing the fine-scale spatial dis-
tribution of asymptomatic parasite carriage and immu-
nological evidence of previous malaria exposure in a 
highland area. PCR-detectable P. falciparum infections 
were very common in this highland setting, apparently 
asymptomatic and negatively correlated with altitude. 
Parasite prevalence by PCR was 27.2  % in the popula-
tion residing at 1350–1449  m, 19.6  % at 1450–1499  m, 
16.7 % at 1450–1549 m and 8.1 % at 1550–1650 m. Using 
an equation model fitted to 86 surveys that determined 
parasite prevalence by microscopy and PCR [41], the cor-
responding parasite prevalence could be estimated by 
microscopy at 9.7 % (95 % CI 8.3–11.2) at 1350–1449 m, 
6.1 % (95 % CI 5.1–7.3) at 1450–1499 m, 5.0 % (95 % CI 
4.1–6.1) at 1450–1549 m and 2.0 % (95 % CI 1.3–3.0 %) 
at 1550–1650  m. Only a small fraction of these P. falci-
parum infections resulted in fever at the time of sam-
pling and apparently asymptomatic parasite carriage was 
prevalent at all altitudes [27] and in all age-groups [41]. 
Recently, a manuscript summarized the evidence on 
the clinical consequences of chronic low density infec-
tions, arguing that many infections are incorrectly clas-
sified as asymptomatic and have considerable health 
consequences in terms of anaemia, chronic inflamma-
tion, school performance and bacterial infections [42]. 
Since the cross-sectional design of this study does not 
allow to determine whether the nPCR detected infec-
tions had clinical implications for the study population, it 
cannot be concluded with certainty whether the detected 
infections were indeed asymptomatic. However, concur-
rent clinical symptoms were reported by a small minority 
of the examined population and infections were probably 
chronic in nature. Although individuals with limited pre-
vious exposure may harbor low density infections [41], 
the high prevalence of apparently asymptomatic para-
site carriage, absence of travelling as obvious risk factor 
for malaria and the gradual age- and altitude-dependent 
acquisition of antibody responses to P. falciparum anti-
gens at different altitudes suggests stable local malaria 
transmission in the area.

Whilst travel, a known risk factor for malaria in high-
land areas [43, 44], was not significantly associated with 
individual risk of malaria infection or antibodies, several 
household factors such as the presence of open eaves and 
mud walls [6, 9] were statistically significant predictors of 
malaria risk. This suggests that relatively simple house-
hold improvements may decrease malaria risk [45, 46] in 
a region where the perceived and measured indoor expo-
sure to malaria vectors is low [28]. Altitude, distance to 

Fig. 3 Parasite prevalence and antibody responses in relation to 
altitude. a Presents parasite prevalence by PCR (open squares) and 
malaria-specific antibody prevalence (MSP-119 and/or AMA-1 anti-
bodies detected by ELISA) showed a strong negative association with 
altitude (r = 0.92, p < 0.0001 for both associations). b Presents the 
age-dependent antibody acquisition at different altitudes. Lines show 
the fitted association between age and antibody positivity for indi-
viduals residing at 1350–1449 m (grey line, n = 4967), 1450–1499 m 
(orange line, n = 6252), 1500–1549 m (red line, n = 4361) and 1550 
meters and above (black line, n = 777). Symbols indicate parasite 
prevalence estimates for children below 5 years of age, 6–10 years, 
11–15 years, 16–25 years and >26 years. Symbols are plotted at the 
median age for the different categories; for the highest age category 
parasite prevalence is plotted at 35 years
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water and the proportion of antibody or parasite positive 
individuals in the immediate vicinity of a compound were 
statistically significant and biologically plausible factors 
associated with malaria risk. The latter could suggest 
considerable between household transmission.

Conclusions
Evidence of relatively stable malaria transmission in this 
site at 1350–1600 m altitude was observed. Altitude was 
a major driver of malaria transmission in the study area, 
even across narrow altitude bands. Although malaria 
risk was spatially heterogeneous, the strong correlation 
between current parasite carriage and serological mark-
ers of malaria exposure and other established risk factors 
for malaria indicate temporal stability of geographical 
patterns in malaria exposure. The fine scale heterogeneity 
in this low-endemic setting may reflect a likely scenario 
for more endemic areas with active and effective control 

programmes as they reduce transmission to increasingly 
low levels. A priori knowledge of the factors that influ-
ence residual malaria in foci of low transmission is likely 
to further expedite control and elimination attempts.
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Table 2 Factors associated with malaria parasite prevalence or antibody prevalence

a Adjusted for clustering on compound level. The odds ratio and 95 % confidence interval of household and geographical factors in relation to antibody prevalence, 
after adjustment for age and clustering of observations; TWI is topographical wetness index

Parasite prevalence Antibody prevalence

ORa Adjusted OR (95 % CI)a ORa Adjusted OR (95 % CI)a

Individual characteristics

Age ( years)

 ≤5 1 (reference) 1 (reference) 1 (reference) 1 (reference)

 6–10 1.27 (1.13–1.42) 1.26 (1.10–1.46) 1.88 (1.71–2.06) 2.35 (2.10–2.63)

 11–15 1.22 (1.07–1.39) 1.25 (1.08–1.47) 3.51 (3.17–3.89) 4.70 (4.15–5.33)

 16–25 0.92 (0.81–1.04) 0.89 (0.76–1.04) 4.57 (4.13–5.07) 6.57 (5.79–7.46)

 ≥26 0.64 (0.57–0.73) 0.61 (0.53–0.71) 4.33 (3.97–4.72) 6.05 (5.43–6.73)

Bed net use 0.79 (0.71–0.88) 0.82 (0.72–0.93) 0.85 (0.79–0.93) 0.89 (0.81–0.98)

House structure

 Mud wall 1.46 (1.25–1.71) 1.26 (1.05–1.50) 1.14 (1.03–1.27)

 Open eaves 1.25 (1.10–1.41) 1.16 (1.01–1.34) 1.28 (1.17–1.39) 1.33 (1.21–1.46)

Environment

Distance to water

 <250 m 1 (reference) 1 (reference) 1 (reference)

 250–500 m 1.04 (0.89–1.22) 0.97 (0.87–1.09) 1.04 (0.92–1.19)

 500–999 m 0.83 (0.71–0.96) 0.66 (0.59–0.74) 0.91 (0.80–1.03)

 1000 m+ 0.78 (0.62–0.98) 0.44 (0.38–0.52) 0.81 (0.67–0.97)

Altitude (m)

 1350–1449 1 (reference) 1 (reference) 1 (reference) 1 (reference)

 1450–1499 0.63 (0.55–0.72) 0.84 (0.72–0.98) 0.83 (0.75–0.91) 0.90 (0.81–1.01)

 1500–1549 0.52 (0.45–0.61) 0.68 (0.56–0.81) 0.57 (0.51–0.64) 0.79 (0.69–0.89)

 1550–1650 0.25 (0.17–0.37) 0.43 (0.28–0.66) 0.28 (0.23–0.35) 0.71 (0.56–0.90)

Parasite prevalence 500 m radius 1.06 (1.05–1.06) 1.07 (1.06–1.07) 1.03 (1.02–1.03)

Antibody prevalence 500 m radius 1.02 (1.02–1.03) 1.04 (1.03–1.04) 1.04 (1.03–1.04)

TWI (minimum) 1.91 (1.70–2.16) 1.23 (1.06–1.41)

TWI (mean) 2.16 (1.94–2.41)

TWI (maximum) 1.03 (1.01–1.05) 0.97 (0.95–1.00) 1.09 (1.07–1.10)
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