14 research outputs found
Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO\u3csub\u3e2\u3c/sub\u3e Adsorption
© Copyright © 2020 Chatterjee, Sajjadi, Chen, Mattern, Hammer, Raman and Dorris. The present study examined the effect of pyrolysis temperature on the physicochemical properties of biochar, activation process and carbon capture. Two different categories of biochars were synthesized from herbaceous (miscanthus and switchgrass) and agro-industrial (corn stover and sugarcane bagasse) feedstock under four different pyrolysis temperatures −500, 600, 700, and 800°C. The synthesized biochars underwent sono-amination activation comprising low-frequency acoustic treatment followed by amine functionalization to prepare adsorbents for CO2 capture. The highest increment (200%) of CO2 capture capacity was observed for sono-aminated samples prepared at 600 and 700°C (maximum improvement for miscanthus), while biochars synthesized at 500 and 800°C demonstrated comparatively lesser increment in adsorption capacities that falls in the range of 115–151 and 127–159%, respectively compared to 600 and 700°C. The elevated pyrolysis temperature (particularly 600 and 700°C) resulted in increased %C and %ash contents and reduced %N contents with enhancement of micro surface area and pore volume. Thus, the superior adsorption capacity of miscanthus (at 600 and 700°C) can be attributed to their large surface areas (303–325 m2/g), high carbon contents (82–84%), and low ash contents (4–5%), as well as %N contents after sono-amination that was twice that of raw char
Investigation of convection and diffusion during biodiesel production in packed membrane reactor using 3D simulation
The 3D simulation of convection and diffusion phenomena within a ceramic membrane during transesterification reaction was the aim of this study. The ceramic membrane was a tubular micro porous TiO2/Al2O3 packed with the heterogeneous catalyst. The Navier–Stokes, Brinkman and Stephan–Maxwell equations were applied for investigation of fluid flow reaction and mass transfer within the system. The value of the convection was generally between 104 and 107 times higher than diffusion. It depends on concentration component, the diffusion coefficient and components velocity. A good agreement was found with the maximum deviation of 8% from experimental data
Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity
© 2018 Elsevier B.V. The main objective of a series of our researches is to develop a novel acoustic-based method for activation of biochar. This study investigates the capability of biochar in adsorbing Ni(II) as a hazardous contaminant and aims at enhancing its adsorption capacity by the addition of extra nitrogen and most probably phosphorous and oxygen containing sites using an ultrasono-chemical modification mechanism. To reach this objective, biochar physically modified by low-frequency ultrasound waves (USB) was chemically treated by phosphoric acid (H3PO4) and then functionalized by urea (CO(NH2)2). Cavitation induced by ultrasound waves exfoliates and breaks apart the regular shape of graphitic oxide layers of biochar, cleans smooth surfaces, and increases the porosity and permeability of biochar\u27s carbonaceous structure. These phenomena synergistically combined with urea functionalization to attach the amine groups onto the biochar surface and remarkably increased the adsorption of Ni(II). It was found that the modified biochar could remove \u3e 99% of 100 mg Ni(II)/L in only six hours, while the raw biochar removed only 73.5% of Ni(II) in twelve hours. It should be noted that physical treatment of biochar with ultrasound energy, which can be applied at room temperature for a very short duration, followed by chemical functionalization is an economical and efficient method of biochar modification compared with traditional methods, which are usually applied in a very severe temperature (\u3e873 K) for a long duration. Such modified biochars can help protect human health from metal-ion corrosion of degrading piping in cities with aging infrastructure
Alkenes
In organic chemistry, Alkenes, also known as olefins, are the unsaturated hydrocarbons with the general formula of CnH2n that contains one or more carbon-carbon double bonds in their chemical structures (RC=CR'). The presence of this double bond allows alkenes to react in ways that alkanes cannot. Hence, alkenes find many diverse applications in industry. These compounds are widely used as initial materials in the synthesis of alcohols, plastics, lacquers, detergents, and fuels. The current book includes all knowledge and novel data according to the structure of alkenes, their novel synthesis methods, and their applications. In addition, manufacture, properties, and the use of polyalkenes are the other important topics that are covered in this book. These data are collected by the efforts and contributions of many authors and scientists from all over the globe, and all of us are ready to further improve the contents of this book as per the readers' comments