1,496 research outputs found

    Crystal Structure of Human TWEAK in Complex with the Fab Fragment of a Neutralizing Antibody Reveals Insights into Receptor Binding.

    Get PDF
    The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics. To gain insights into this important signaling pathway, we determined the structure of soluble human TWEAK in complex with the Fab fragment of an antibody selected for inhibition of receptor binding. In the crystallized complex TWEAK is bound by three Fab fragments of the neutralizing antibody. Homology modeling shows that Fab binding overlaps with the putative Fn14 binding site of TWEAK. Docking of the Fn14 cysteine rich domain (CRD) to that site generates a highly complementary interface with perfectly opposing charged and hydrophobic residues. Taken together the presented structure provides new insights into the biology of TWEAK and the TWEAK/Fn14 pathway, which will help to optimize the therapeutic strategy for treatment of related cancer types and autoimmune diseases

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group

    Protective Effects of Radon Inhalation on Carrageenan-Induced Inflammatory Paw Edema in Mice

    Get PDF
    We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m3 of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema

    Comparative Study on the Inhibitory Effects of α-Tocopherol and Radon on Carbon Tetrachloride-Induced Renal Damage

    Get PDF
    Since the 2011 nuclear accident in Fukushima, the effects of low-dose irradiation, especially internal exposure, are at the forefront of everyone’s attention. However, low-dose radiation induced various stimulating effects such as activation of antioxidative and immune functions. In this study, we attempted to evaluate the quantitative effects of the activation of antioxidative activities in kidney induced by radon inhalation on carbon tetrachloride (CCl4)-induced renal damage. Mice were subjected to intraperitoneal (i.p.) injection of CCl4 after inhaling approximately 1000 or 2000 Bq/m3 radon for 24 h, or immediately after i.p. injection of α-tocopherol (100, 300, or 500 mg/kg bodyweight). In case of renal function, radon inhalation at a concentration of 2000 Bq/m3 has the inhibitory effects similar to α-tocopherol treatment at a dose of 300–500 mg/kg bodyweight. The activities of superoxide dismutase and catalase in kidneys were significantly higher in mice exposed to radon as compared to mice treated with CCl4 alone. These findings suggest that radon inhalation has an antioxidative effect against CCl4-induced renal damage similar to the antioxidative effects of α-tocopherol due to induction of antioxidative functions

    An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper (R)

    Get PDF
    Background: Accurate determination of the predictive markers human epidermal growth factor receptor 2 (HER2/ERBB2), estrogen receptor (ER/ESR1), progesterone receptor (PgR/PGR), and marker of proliferation Ki67 (MKI67) is indispensable for therapeutic decision making in early breast cancer. In this multicenter prospective study, we addressed the issue of inter- and intrasite reproducibility using the recently developed reverse transcription-quantitative real-time polymerase chain reaction-based MammaTyper (R) test. Methods: Ten international pathology institutions participated in this study and determined messenger RNA expression levels of ERBB2, ESR1, PGR, and MKI67 in both centrally and locally extracted RNA from formalin-fixed, paraffin-embedded breast cancer specimens with the MammaTyper (R) test. Samples were measured repeatedly on different days within the local laboratories, and reproducibility was assessed by means of variance component analysis, Fleiss' kappa statistics, and interclass correlation coefficients (ICCs). Results: Total variations in measurements of centrally and locally prepared RNA extracts were comparable; therefore, statistical analyses were performed on the complete dataset. Intersite reproducibility showed total SDs between 0.21 and 0.44 for the quantitative single-marker assessments, resulting in ICC values of 0.980-0.998, demonstrating excellent agreement of quantitative measurements. Also, the reproducibility of binary single-marker results (positive/negative), as well as the molecular subtype agreement, was almost perfect with kappa values ranging from 0.90 to 1.00. Conclusions: On the basis of these data, the MammaTyper (R) has the potential to substantially improve the current standards of breast cancer diagnostics by providing a highly precise and reproducible quantitative assessment of the established breast cancer biomarkers and molecular subtypes in a decentralized workup.Peer reviewe

    Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    Get PDF
    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions

    Molecular Drivers of Oncotype DX, Prosigna, EndoPredict, and the Breast Cancer Index: A TransATAC Study.

    Get PDF
    PURPOSE: The Oncotype DX Recurrence Score (RS), Prosigna Prediction Analysis of Microarray 50 (PAM50) Risk of Recurrence (ROR), EndoPredict (EP), and Breast Cancer Index (BCI) are used clinically for estimating risk of distant recurrence for patients receiving endocrine therapy. Discordances in estimates occur between them. We aimed to identify the molecular features that drive the tests and lead to these differences. PATIENTS AND METHODS: Analyses for RS, ROR, EP, and BCI were conducted by the manufacturers in the TransATAC sample collection that consisted of the tamoxifen or anastrozole arms of the ATAC trial. Estrogen receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative cases without chemotherapy treatment were included in which all four tests were available (n = 785). Clinicopathologic features included in some tests were excluded from the comparisons. Estrogen, proliferation, invasion, and HER2 module scores from RS were used to characterize the respective molecular features. Spearman correlation and analysis of variance tests were applied. RESULTS: There were moderate to strong correlations among the four molecular scores (ρ = 0.63-0.74) except for RS versus ROR (ρ = 0.32) and RS versus BCI (ρ = 0.35). RS had strong negative correlation with its estrogen module (ρ = -0.79) and moderate positive correlation with its proliferation module (ρ = 0.36). RS's proliferation module explained 72.5% of ROR's variance, while the estrogen module explained only 0.6%. Most of EP's and BCI's variation was accounted for by the proliferation module (50.0% and 54.3%, respectively) and much less by the estrogen module (20.2% and 2.7%, respectively). CONCLUSION: In contrast to common understanding, RSs are determined more strongly by estrogen-related features and only weakly by proliferation markers. However, the EP, BCI, and particularly ROR scores are determined largely by proliferative features. These relationships help to explain the differences in the prognostic performance of the tests
    corecore