125 research outputs found
Impact of Synchronised Flow in Oversaturated City Traffic on Energy Efficiency of Conventional and Electrical Vehicles
In this study of city traffic, we show that empirical synchronised flow patterns, which have been revealed recently in oversaturated traffic, exhibit considerable impact on the energy efficiency of vehicles. In particular, we have found out that energy consumption in oversaturated city traffic can decrease considerably when the oversaturated city traffic consists of synchronised flow patterns rather than consisting of moving queues of the classical traffic flow theory at traffic signals. Using empirical GNSS data measured by navigation devices on two different road sections in Düsseldorf, Germany, we show that synchronised flow patterns and moving queues differ in their cumulated vehicle acceleration (a sum of positive speed differences along a vehicle trajectory) despite similar mean speeds. Energy efficiency in return is dependent on the cumulated vehicle acceleration. We consider both the fuel consumption of conventional vehicles with combustion engines and the energy balance of electrical vehicles
Breakdown and recovery in traffic flow models
Most car-following models show a transition from laminar to ``congested''
flow and vice versa. Deterministic models often have a density range where a
disturbance needs a sufficiently large critical amplitude to move the flow from
the laminar into the congested phase. In stochastic models, it may be assumed
that the size of this amplitude gets translated into a waiting time, i.e.\
until fluctuations sufficiently add up to trigger the transition. A recently
introduced model of traffic flow however does not show this behavior: in the
density regime where the jam solution co-exists with the high-flow state, the
intrinsic stochasticity of the model is not sufficient to cause a transition
into the jammed regime, at least not within relevant time scales. In addition,
models can be differentiated by the stability of the outflow interface. We
demonstrate that this additional criterion is not related to the stability of
the flow. The combination of these criteria makes it possible to characterize
commonalities and differences between many existing models for traffic in a new
way
Coherent Moving States in Highway Traffic (Originally: Moving Like a Solid Block)
Recent advances in multiagent simulations have made possible the study of
realistic traffic patterns and allow to test theories based on driver
behaviour. Such simulations also display various empirical features of traffic
flows, and are used to design traffic controls that maximise the throughput of
vehicles in heavily transited highways. In addition to its intrinsic economic
value, vehicular traffic is of interest because it may throw light on some
social phenomena where diverse individuals competitively try to maximise their
own utilities under certain constraints.
In this paper, we present simulation results that point to the existence of
cooperative, coherent states arising from competitive interactions that lead to
a new phenomenon in heterogeneous highway traffic. As the density of vehicles
increases, their interactions cause a transition into a highly correlated state
in which all vehicles practically move with the same speed, analogous to the
motion of a solid block. This state is associated with a reduced lane changing
rate and a safe, high and stable flow. It disappears as the vehicle density
exceeds a critical value. The effect is observed in recent evaluations of Dutch
traffic data.Comment: Submitted on April 21, 1998. For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.parc.xerox.com/dynamics
A Kriging procedure for processes indexed by graphs
International audienceWe provide a new kriging procedure of processes on graphs. Based on the construction of Gaussian random processes indexed by graphs, we extend to this framework the usual linear prediction method for spatial random fields, known as kriging. We provide the expression of the estimator of such a random field at unobserved locations as well as a control for the prediction error
Complex Dynamics of Bus, Tram and Elevator Delays in Transportation System
It is necessary and important to operate buses and trams on time. The bus
schedule is closely related to the dynamic motion of buses. In this part, we
introduce the nonlinear maps for describing the dynamics of shuttle buses in
the transportation system. The complex motion of the buses is explained by the
nonlinear-map models. The transportation system of shuttle buses without
passing is similar to that of the trams. The transport of elevators is also
similar to that of shuttle buses with freely passing. The complex dynamics of a
single bus is described in terms of the piecewise map, the delayed map, the
extended circle map and the combined map. The dynamics of a few buses is
described by the model of freely passing buses, the model of no passing buses,
and the model of increase or decrease of buses. The nonlinear-map models are
useful to make an accurate estimate of the arrival time in the bus
transportation
Flood Impacts on Road Transportation Using Microscopic Traffic Modelling Techniques
This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordThis paper proposes a novel methodology for modelling the impacts of floods on traffic. Often, flooding is a complex combination of various causes (coastal, fluvial and pluvial). Further, transportation systems are very sensitive to external disturbances. The interactions between these two complex and dynamic systems have not been studied in detail so far. To address this issue, this paper proposes a methodology for a dynamic integration of a flood model (MIKE FLOOD) and a microscopic traffic simulation model (SUMO). The flood modelling results indicate which roads are inundated for a period of time. The traffic on these links will be halted or delayed according to the flood characteristics—extent, propagation and depth. As a consequence, some of the trips need to be cancelled; some need to be rerouted to unfavourable routes; and some are indirectly affected. A comparison between the baseline and a flood scenario yields the impacts of that flood on traffic, estimated in terms of lost business hours, additional fuel consumption and additional CO2 emissions. The proposed methodology will be further developed as a workable tool to evaluate the flooding impact on transportation network at city scale automatically.Research on the PEARL (Preparing for Extreme And Rare events in coastaL regions) project is funded by the European Commission through Framework Programme 7, Grant Number 603663
Genome-Wide Association Study in Bipolar Patients Stratified by Co-Morbidity
Bipolar disorder is a severe psychiatric disorder with high heritability. Co-morbid conditions are common and might define latent subgroups of patients that are more homogeneous with respect to genetic risk factors.In the Caucasian GAIN bipolar disorder sample of 1000 cases and 1034 controls, we tested the association of single nucleotide polymorphisms with patient subgroups defined by co-morbidity.). All three associations were found under the recessive genetic model. Bipolar disorder with low probability of co-morbid conditions did not show significant associations.Conceptualizing bipolar disorder as a heterogeneous disorder with regard to co-morbid conditions might facilitate the identification of genetic risk alleles. Rare variants might contribute to the susceptibility to bipolar disorder
Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux
A fully adaptive finite volume multiresolution scheme for one-dimensional
strongly degenerate parabolic equations with discontinuous flux is presented.
The numerical scheme is based on a finite volume discretization using the
Engquist--Osher approximation for the flux and explicit time--stepping. An
adaptivemultiresolution scheme with cell averages is then used to speed up CPU
time and meet memory requirements. A particular feature of our scheme is the
storage of the multiresolution representation of the solution in a dynamic
graded tree, for the sake of data compression and to facilitate navigation.
Applications to traffic flow with driver reaction and a clarifier--thickener
model illustrate the efficiency of this method
Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization
Metabolic network reconstructions represent valuable scaffolds for ‘-omics’ data integration and are used to computationally interrogate network properties. However, they do not explicitly account for the synthesis of macromolecules (i.e., proteins and RNA). Here, we present the first genome-scale, fine-grained reconstruction of Escherichia coli's transcriptional and translational machinery, which produces 423 functional gene products in a sequence-specific manner and accounts for all necessary chemical transformations. Legacy data from over 500 publications and three databases were reviewed, and many pathways were considered, including stable RNA maturation and modification, protein complex formation, and iron–sulfur cluster biogenesis. This reconstruction represents the most comprehensive knowledge base for these important cellular functions in E. coli and is unique in its scope. Furthermore, it was converted into a mathematical model and used to: (1) quantitatively integrate gene expression data as reaction constraints and (2) compute functional network states, which were compared to reported experimental data. For example, the model predicted accurately the ribosome production, without any parameterization. Also, in silico rRNA operon deletion suggested that a high RNA polymerase density on the remaining rRNA operons is needed to reproduce the reported experimental ribosome numbers. Moreover, functional protein modules were determined, and many were found to contain gene products from multiple subsystems, highlighting the functional interaction of these proteins. This genome-scale reconstruction of E. coli's transcriptional and translational machinery presents a milestone in systems biology because it will enable quantitative integration of ‘-omics’ datasets and thus the study of the mechanistic principles underlying the genotype–phenotype relationship
Factors associated with intentions to adhere to colorectal cancer screening follow-up exams
BACKGROUND: To increase adherence rate to recommendations for follow-up after abnormal colorectal cancer (CRC) screening results, factors that inhibit and facilitate follow-up must be identified. The purpose of this study was to identify the factors associated with intention to adhere to CRC screening follow-up exams. METHODS: During a 4-week period in October 2003, this survey was conducted with 426 subjects participating in a community-based CRC screening program in Nagano, Japan. Study measures included intention to adhere to recommendation for clinical follow-up in the event of an abnormal fecal occult blood test (FOBT) result, perceived susceptibility and severity of CRC, perceived benefits and barriers related to undergoing follow-up examination, social support, knowledge of CRC risk factors, health status, previous CRC screening, personality and social demographic characteristics. Univariate and multivariate logistic regression analyses on intention to adhere to recommendations for follow-up were performed. RESULTS: Among the 288 individuals analyzed, approximately 74.7% indicated that they would definitely adhere to recommendations for follow-up. After controlling for age, gender, marital status, education, economic status, trait anxiety, bowel symptoms, family history of CRC, and previous screening FOBT, analyses revealed that lower levels of perceived barriers, higher levers of perceived benefits and knowledge of CRC risk factors were significantly associated with high intention respectively. CONCLUSION: The results of this study suggest that future interventions should focus on reducing modifiable barriers by clarifying misperceptions about follow-up, promoting the acceptance of complete diagnostic evaluations, addressing psychological distress, and making follow-up testing more convenient and accessible. Moreover, educating the public regarding the risk factors of CRC and increasing understanding of the benefits of follow-up is also important
- …