1,482 research outputs found

    Photometric redshifts for Quasars in multi band Surveys

    Get PDF
    MLPQNA stands for Multi Layer Perceptron with Quasi Newton Algorithm and it is a machine learning method which can be used to cope with regression and classification problems on complex and massive data sets. In this paper we give the formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (SDSS, GALEX, UKIDSS and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able i) to achieve a very high accuracy; ii) to drastically reduce the number of outliers and catastrophic objects; iii) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of DeltaZnorm (i.e. (zspec-zphot)/(1+zspec)), to an average of DeltaZnorm = 0.004, a standard deviation sigma = 0.069 and a Median Absolute Deviation MAD = 0.02 over the whole redshift range (i.e. zspec <= 3.6), defined by the 4-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e. of objects with photo-z deviating more than 2sigma from the spectroscopic value is < 3%, leading to a sigma = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE web application.Comment: 38 pages, Submitted to ApJ in February 2013; Accepted by ApJ in May 201

    Astrophysics in S.Co.P.E

    Get PDF
    S.Co.P.E. is one of the four projects funded by the Italian Government in order to provide Southern Italy with a distributed computing infrastructure for fundamental science. Beside being aimed at building the infrastructure, S.Co.P.E. is also actively pursuing research in several areas among which astrophysics and observational cosmology. We shortly summarize the most significant results obtained in the first two years of the project and related to the development of middleware and Data Mining tools for the Virtual Observatory

    Catalog of quasars from the Kilo-Degree Survey Data Release 3

    Get PDF
    We present a catalog of quasars selected from broad-band photometric ugri data of the Kilo-Degree Survey Data Release 3 (KiDS DR3). The QSOs are identified by the random forest (RF) supervised machine learning model, trained on SDSS DR14 spectroscopic data. We first cleaned the input KiDS data from entries with excessively noisy, missing or otherwise problematic measurements. Applying a feature importance analysis, we then tune the algorithm and identify in the KiDS multiband catalog the 17 most useful features for the classification, namely magnitudes, colors, magnitude ratios, and the stellarity index. We used the t-SNE algorithm to map the multi-dimensional photometric data onto 2D planes and compare the coverage of the training and inference sets. We limited the inference set to r<22 to avoid extrapolation beyond the feature space covered by training, as the SDSS spectroscopic sample is considerably shallower than KiDS. This gives 3.4 million objects in the final inference sample, from which the random forest identified 190,000 quasar candidates. Accuracy of 97%, purity of 91%, and completeness of 87%, as derived from a test set extracted from SDSS and not used in the training, are confirmed by comparison with external spectroscopic and photometric QSO catalogs overlapping with the KiDS footprint. The robustness of our results is strengthened by number counts of the quasar candidates in the r band, as well as by their mid-infrared colors available from WISE. An analysis of parallaxes and proper motions of our QSO candidates found also in Gaia DR2 suggests that a probability cut of p(QSO)>0.8 is optimal for purity, whereas p(QSO)>0.7 is preferable for better completeness. Our study presents the first comprehensive quasar selection from deep high-quality KiDS data and will serve as the basis for versatile studies of the QSO population detected by this survey.Comment: Data available from the KiDS website at http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php and the source code from https://github.com/snakoneczny/kids-quasar

    Steps towards a map of the nearby universe

    Get PDF
    We present a new analysis of the Sloan Digital Sky Survey data aimed at producing a detailed map of the nearby (z < 0.5) universe. Using neural networks trained on the available spectroscopic base of knowledge we derived distance estimates for about 30 million galaxies distributed over ca. 8,000 sq. deg. We also used unsupervised clustering tools developed in the framework of the VO-Tech project, to investigate the possibility to understand the nature of each object present in the field and, in particular, to produce a list of candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed

    AGN automatic photometric classification

    Get PDF
    In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification ofAGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, Q4 to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations

    Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies

    Get PDF
    Despite the high accuracy of photometric redshifts (zphot) derived using Machine Learning (ML) methods, the quantification of errors through reliable and accurate Probability Density Functions (PDFs) is still an open problem. First, because it is difficult to accurately assess the contribution from different sources of errors, namely internal to the method itself and from the photometric features defining the available parameter space. Second, because the problem of defining a robust statistical method, always able to quantify and qualify the PDF estimation validity, is still an open issue. We present a comparison among PDFs obtained using three different methods on the same data set: two ML techniques, METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) and ANNz2, plus the spectral energy distribution template fitting method, BPZ. The photometric data were extracted from the KiDS (Kilo Degree Survey) ESO Data Release 3, while the spectroscopy was obtained from the GAMA (Galaxy and Mass Assembly) Data Release 2. The statistical evaluation of both individual and stacked PDFs was done through quantitative and qualitative estimators, including a dummy PDF, useful to verify whether different statistical estimators can correctly assess PDF quality. We conclude that, in order to quantify the reliability and accuracy of any zphot PDF method, a combined set of statistical estimators is required.Comment: Accepted for publication by MNRAS, 20 pages, 14 figure
    corecore