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ABSTRACT

We present a catalog of quasars selected from broad-band photometric ugri data of the Kilo-Degree Survey Data Release 3 (KiDS 
DR3). The QSOs are identified by the random forest (RF) supervised machine learning model, trained on Sloan Digital Sky Survey 
(SDSS) DR14 spectroscopic data. We first cleaned the input KiDS data of entries with excessively noisy, missing or otherwise 
problematic measurements. Applying a feature importance analysis, we then tune the algorithm and identify in the KiDS multiband 
catalog the 17 most useful features for the classification, namely magnitudes, colors, magnitude ratios, and the stellarity index. We 
used the t-SNE algorithm to map the multidimensional photometric data onto 2D planes and compare the coverage of the training 
and inference sets. We limited the inference set to r < 22 to avoid extrapolation beyond the feature space covered by training, as 
the SDSS spectroscopic sample is considerably shallower than KiDS. This gives 3.4 million objects in the final inference sample, 
from which the random forest identified 190 000 quasar candidates. Accuracy of 97% (percentage of correctly classified objects), 
purity of 91% (percentage of true quasars within the objects classified as such), and completeness of 87% (detection ratio of all true 
quasars), as derived from a test set extracted from SDSS and not used in the training, are confirmed by comparison with external 
spectroscopic and photometric QSO catalogs overlapping with the KiDS footprint. The robustness of our results is strengthened by 
number counts of the quasar candidates in the r band, as well as by their mid-infrared colors available from the Wide-field Infrared 
Survey Explorer (WISE). An analysis of parallaxes and proper motions of our QSO candidates found also in Gaia DR2 suggests that 
a probability cut of PqSO > 0.8 is optimal for purity, whereas PqSO > 0.7 is preferable for better completeness. Our study presents 
the first comprehensive quasar selection from deep high-quality KiDS data and will serve as the basis for versatile studies of the QSO 
population detected by this survey.

Key words. catalogs -  surveys -  quasars: general -  large-scale structure of Universe -  methods: data analysis -  
methods: observational

1. Introduction
One of the key goals of ongoing and planned wide-angle sky sur­
veys is to map the large-scale structure (LSS) of the Universe and 
derive various cosmological constraints, using different probes 
such as galaxy clustering or gravitational lensing. The build­
ing blocks of the LSS are galaxies, and among them those with 
active galactic nuclei (AGN) stand out. Presence of an AGN is a 
signature of a growing supermassive black hole (SMBH) at the 
center of the galaxy (e.g., Kormendy & Ho 2013). AGN luminos­
ity, contrary to its host galaxy, does not come from stellar radia­
tion but rather from energy released during the accretion of the 
material onto the SMBH. Various accompanying phenomena,

* A copy of the catalog is available at the CDS via anonymous ftp 
to c d s a rc .u -s tra s b g .f r  (138.79.128.5) or via h t tp : / /c d s a rc .  
u -strasbg .fr/v iz-b in /qcat?J/A + A /624 /A 13
** We publicly release the resulting catalog at h t tp : / /k id s .s t r w . 
le idenuniv .n l/D R 3/quasarcatalog .php , and the code at h ttp s : 
//g ithub .com /snakoneczny /k ids-quasars.

including jets launched orthogonally to the accretion disk, make 
the AGNs very luminous. This means that they can be detected 
from large, cosmological distances, and as they often outshine 
their host galaxies, they are observed as point-like quasars1.

Quasars typically reside in very massive dark matter haloes 
of masses above 1012 M0 (e.g., Eftekharzadeh et al. 2015; 
DiPompeo et al. 2016), and trace the peaks of the underlying 
matter field. In cosmological terms this means that QSOs are 
highly biased tracers of the LSS (e.g., DiPompeo et al. 2014; 
Laurent et al. 2017). Together with their large intrinsic lumi­
nosities, this makes QSOs very useful cosmological probes: they 
can be detected up to very high redshifts and their measured 
clustering amplitude is considerably higher than that of field 
galaxies. On the other hand, at any cosmic epoch quasars are 
much more sparsely distributed than inactive galaxies, and are 
therefore sufficiently large and cosmologically useful samples

1 In this paper we use the terms “quasar” and “QSO” interchangeably,
to denote any galaxy which has a bright, actively accreting nucleus.
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of QSOs require wide-angle surveys covering large volumes of 
the Universe. And indeed, only as a result of dedicated programs 
such as the 2dF QSO Redshift Survey (2QZ; Croom et al. 2004) 
or the Sloan Digital Sky Survey (Sd Ss ; York et al. 2000) do we 
now have catalogs of spectroscopically confirmed QSOs count­
ing ~104-1 0 5 objects.

The most robust way of identifying quasars is via their 
spectra, which present specific features such as broad emis­
sion lines and strong signatures of emission line ratios like 
[OIII1T5007/Ę6, [NII]T6584/Ha (e.g., Kauffmann et al. 2003; 
Kewley et al. 2013). This helps to easily distinguish them from 
inactive galaxies as well as from other point-like sources, namely 
Galactic stars. This is the approach taken by dedicated spec­
troscopic QSO surveys such as the 2QZ, the 2dF-SDSS LRG 
and QSO survey (2SLAQ; Croom et al. 2009) or the SDSS 
(e.g., Paris et al. 2018), as well as the forthcoming DESI 
(DESI Collaboration et al. 2016) and 4MOST (de Jong 2011). 
However, the spectroscopic quasar confirmation method has its 
limitations as it is very expensive in terms of telescope time, 
requiring long integrations due to typically low observed fluxes 
of such sources (related to their enormous distances, despite their 
large intrinsic luminosities). For this reason methods are being 
developed to identify quasars from datasets that are more readily 
available, that is wide-angle broad-band photometric samples.

The imaging-based QSO selection approaches range from 
applying color cuts to photometric data (e.g., Warren et al. 2000; 
Maddox et al. 2008; Edelson & Malkan 2012; Stern et al. 2012; 
Wu et al. 2012; Secrest et al. 2015; Assef et al. 2018) through 
more sophisticated probabilistic methods (Richards et al. 2004, 
2009a,b ; Bovy et al. 2011, 2012; DiPompeo et al. 2015; Richards 
et al. 2015, etc.) to machine learning (ML) based automated 
classification approaches (e.g., Brescia et al. 2015; Carrasco 
et al. 2015; Kurcz et al. 2016). In general, these approaches 
take advantage of the fact that quasars, or more generally AGNs, 
display colors at various wavelengths which are distinct from 
those of inactive galaxies as well as of stars. However, the 
reliability of QSO detection depends on the available number 
of colors and magnitudes. It is therefore desirable to work in 
multidimensional parameter spaces where quasar selection 
becomes more efficient, for example by combining optical and 
infrared (IR) information. In such a situation, however, tradi­
tional color division becomes challenging due to difficulties with 
projecting N  dimensions (ND) onto 2 or at most 3D. For those 
reasons, automated QSO detection via ML is gaining on popu­
larity in the recent years.

Wide-angle quasar samples, especially if they include some 
distance information such as from spectroscopic or photometric 
redshifts, have numerous applications. Photometrically selected 
QSOs are especially useful for studies where high number den­
sity and completeness, not readily available from spectroscopic 
samples, are crucial. These applications include tomographic 
angular clustering (e.g., Leistedt et al. 2014; Ho et al. 2015), 
analyses of cosmic magnification (e.g., Scranton et al. 2005), 
measurements of halo masses (e.g., DiPompeo et al. 2017), 
cross-correlations with various cosmological backgrounds (e.g., 
Sherwin et al. 2012; Cuoco et al. 2017; Stolzner et al. 2018, and 
references therein), and even calibrating the reference frames for 
Galactic studies (e.g., Lindegren et al. 2018).

In this work we explore quasar detection in one of the deep­
est ongoing wide-angle photometric surveys, the Kilo-Degree 
Survey2 (KiDS; de Jong et al. 2013). The depth of KiDS, 
~25 mag in the r  band (5^), its multiwavelength ugri coverage,

2 h t tp : / /k id s .s t rw .le id e n u n iv .n l /

and availability of overlapping VIKING data at a similar depth 
(Edge et al. 2013), make this survey an ideal resource for quasar 
science. This remains however a very much uncharted territory 
in KiDS, and only three studies so far presented QSO-related 
analyses based on this survey: Venemans et al. (2015) focused 
on very high-redshift (z ~ 6) quasars found in a combination 
of KiDS and VIKING data, Heintz et al. (2018) studied a heav­
ily reddened QSO identified in KiDS+VIKING, while Spiniello 
et al. (2018) selected QSO-like objects over the KIDS DR3 foot­
print to search for strong-lensing systems.

Here we make the first step towards systematic studies of 
the KiDS quasar population by presenting automated detection 
of QSOs in the most recent KiDS public Data Release 3 (DR3; 
de Jong et al. 2017). For that purpose we employ one of the most 
widely used supervised machine learning algorithms, random 
forest, to detect QSOs in KiDS imaging in an automated way. 
The model is trained and validated on spectroscopic quasar sam­
ples which overlap with the KiDS DR3 footprint. We put special 
emphasis on selecting the most informative features for the clas­
sification task, as well as on appropriate trimming of the target 
dataset to match the training feature space and avoid unreliable 
extrapolation. This is also aided by analysis of two-dimensional 
projection of the high-dimensional feature space. The trained 
algorithm is then applied on the photometric KiDS data, and the 
robustness of the resulting quasar selection is verified against 
various external catalogs: point sources from the Gaia survey, 
as well as spectroscopic and photometric quasar catalogs, which 
were not used for training or validation. We also verify the num­
ber counts as well as mid-IR colors of the final QSO catalog.

The paper is organized as follows. In Sect. 2 we describe 
the data used for classification, and how it was prepared to con­
struct the inference sample (from KiDS) as well as the training 
set (based on SDSS). Section 3 provides details of the classi­
fication pipeline, including the random forest machine-learning 
model, performance evaluation methodology, model tuning, fea­
ture selection and feature space limitation to match the training 
data. In Sect. 4 we discuss the results of quasar classification in 
KiDS DR3, and quantify its performance both by internal tests 
with SDSS data, as well as by comparing the output with exter­
nal star and quasar datasets. In the final Sect. 5 we conclude and 
mention future prospects for KiDS quasar selection.

2. Data
In this Section we describe the data used for the quasar selec­
tion and for the subsequent validation. We aim to select QSO 
candidates from the photometric data derived from the KiDS 
DR3. As our classification method learns in a supervised man­
ner, it requires a training set with known object labels which we 
obtain from SDSS DR14 spectroscopic data cross-matched with 
KiDS.

2.1. Inference se t from the Kilo-Degree Survey

KiDS is an ongoing wide-field imaging survey using four optical 
broad-band filters, ugri, employing the 268 Megapixel Omega- 
CAM camera (Kuijken 2011) at the VLT Survey Telescope (VST 
Capaccioli et al. 2012). KiDS provides data of excellent photo­
metric quality, with 5 ^  depth of r  ~ 25 mag and typical seeing 
of ~0.7" in the r  band. In this work we make use of its most 
recent public Data Release 3 (de Jong et al. 2017) which covers 
~447 deg2 and includes almost 49 million sources in its multi­
band catalog that we use as the parent dataset.
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2.1.1. Basic features used in the classification

The main features used in the classification process come 
directly from the KiDS catalog and consist of the ugri magni­
tudes and corresponding colors. As detailed in de Jong et al.
(2017), KiDS data processing provides various photometric 
measurements of detected sources. For our purpose we need 
robust measurements of point source photometry, we there­
fore use the GAaP magnitudes (Gaussian Aperture and PSF, 
Kuijken 2008) which are designed to compensate for seeing vari­
ations among different filters. Together with additional photo­
metric homogenization across the survey area, these measure­
ments provide precisely calibrated fluxes and colors (Kuijken 
et al. 2015). Combining the four magnitudes and six colors (one 
for every magnitude pair) results in ten basic features. Although 
using both magnitudes and colors seems redundant with respect 
to using for example only magnitudes or only colors, such redun­
dancy does improve classification results. As detailed later in 
Sect. 3.3, we also tested ratios of magnitudes as additional param­
eters for the classification. Together with the stellarity index 
CLASS_STAR (see below), the magnitudes, colors and magnitude 
ratios constitute the eventual 17D feature space for classification, 
in which only the most relevant features are used.

We note that although a significant fraction of KiDS sources 
are stars, we always use magnitudes and colors corrected for 
Galactic extinction, as our focus is to detect extragalactic 
sources. The measurements are also corrected for the “zero-point 
offset” to ensure flux uniformity over the entire DR3 area3.

Another parameter used in the classification process, which 
turns out to be very important for the performance (Sect. 3.3), is 
CLASS_STAR. This is a continuous stellarity index derived within 
the KiDS data processing pipeline using SExtractor (Bertin & 
Arnouts 1996), which describes the degree to which a source 
is extended. It takes values between 1 (point-like, a star) and 
0 (extended, typically a galaxy). Most quasars, except for the 
rare ones with a clearly visible extended host, are point-like and 
therefore have high values of CLASS_STAR. The reliability of 
this parameter for separation of point sources from extended 
ones depends on the signal-to-noise (S/N) of the objects and 
resolution of the imaging, therefore it may fail to identify faint 
and small galaxies (in terms of apparent values). However, the 
data used for the quasar detection in this work are limited 
to a relatively bright and high S/N subsample of KiDS DR3, 
where CLASS_STAR is robust in separating these two main source 
classes. Indeed, we have verified that for the training set with 
known labels (Sect. 2.2)4, separation at CLASS_STAR of 0.5 
would leave a negligible fraction (0.5%) of galaxies marked as 
“point-like” and a small number (1.9%) of stars identified as 
“extended” . As far as the training-set QSOs are concerned, the 
vast majority of them have CLASS_STAR > 0.6. Some quasars 
with resolved hosts may still be detected as extended, especially 
in a survey with such excellent angular resolution as KiDS. We 
therefore decided to test the usefulness of CLASS_STAR in the 
quasar automated selection and indeed found it very helpful. 
This is discussed in more detail in Sect. 3.3. We would like to 
emphasize, however, that no a priori cut on CLASS_STAR is made 
in either the training or inference sample. The QSO classifica­
tion algorithm filters out most of the extended sources, but does 
identify a fraction of them as quasars. Roughly 1% of the objects 
with textttCLAS S_ S T A R  < 0.5 are assigned a QSO label (20k

3 These offsets are on average ~0.03 mag in the u and i bands, and 
<0.01 mag in the g and r bands. See de Jong et al. (2017) for details.
4 This applies equally to validation and test sets, as they are chosen 
randomly from the general SDSS labeled sample.

Table 1. Numbers of objects left in the KiDS DR3 inference data after 
the subsequent preprocessing steps.

Objects left % of all data

All KiDS DR3 sources 49M 100%
Keep only four-band detections 40M 80%

Cut at limiting magnitudes 11M 22%
& Remove errors >1 mag

Clean up image flags 9M 18%
Cut at r < 22 3.4M 6.8%

Notes. See text for details of these cuts.

out of 2M). This means that ~ 11% of all our quasar candidates 
were classified by KiDS as extended.

The KiDS data processing pipeline provides also another 
star/galaxy separator, SG2DPHOT (de Jong et al. 2015), which 
uses the r -band source morphology and generally is more robust 
than CLASS_STAR. We have however found that in our particu­
lar application, using SG2DPHOT instead of CLASS_STAR gives 
slightly worse classification results. Part of the reason might be 
that SG2DPHOT is a discrete parameter so it provides less infor­
mation to the model than continuous CLASS_STAR.

An additional potentially useful feature in the classifica­
tion process could be photometric redshifts (photo-zs). However, 
KiDS DR3 photo-zs were optimized for galaxies (de Jong et al. 
2017; Bilicki et al. 2018) and are unreliable for quasars, as we 
indeed verified for overlapping spectroscopic QSOs. In future 
work we will address the issue of deriving more robust QSO 
photo-zs in KiDS as well as estimating them jointly with object 
classification (see e.g., Yeche et al. 2010).

2.1.2. Data preprocessing

Machine-learning methods, such as the one employed in this 
paper, require data of adequate quality in order to perform reli­
ably. In addition, in supervised learning, it is desirable to avoid 
extrapolation beyond the feature space covered by the available 
training set. For those reasons, we apply appropriate cleaning 
and cuts on KiDS DR3 data as specified below, to ensure reli­
able quasar classification.

Keep only four-band detections. A fraction of KiDS DR3 
sources do not have all the four bands measured. As Machine- 
learning models require all employed features to bear a numer­
ical representation, using sources with missing features would 
require assigning some artificial values to relevant magnitudes 
and colors. As already one missing magnitude means three 
colors are not available, even in such a minimal scenario it 
would significantly reduce the available information. As we 
show below, colors are in fact among the most important fea­
tures in our classification procedure, and we cannot afford to lose 
them. Therefore, we only use objects with all the four ugri bands 
measured. This step removes about 20% of the catalog entries, 
leaving roughly 40 million sources (Table 1) .

Ensure sufficient signal-to-noise ratio. To avoid working with 
excessively noisy data which could significantly affect classifica­
tion performance, we first cut the KiDS data at the nominal lim­
iting magnitude levels, which are 24.3, 25.1, 24.9, 23.8 in ugri, 
respectively. Additionally, we require the photometric errors in 
each band to be smaller than 1 mag, which roughly corresponds 
to S/N of 1. These two cuts applied simultaneously on all the
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Fig. 1. Normalized histograms of the r-band magnitude (left panel) and the u -  g color (right panel) for the KiDS inference dataset (pink solid) 
and the KiDS x SDSS training set (green dashed), both before applying the r < 22 mag cut. The bimodality of the matched sample is related to 
SDSS spectroscopic target preselections, preserved by the cross-match with the much deeper KiDS.

bands (i.e., as a joint condition) are the most strict among other 
cleaning requirements and together with the above item #1, leave 
~11 million KiDS DR3 objects. However, we note that due to 
training set limitations, a further and stricter cut on the r band 
magnitude is applied below.
Rem ove flagged objects. The KiDS data processing pipeline 
provides various flags for detected objects, indicating possible 
issues with photometry (see de Jong et al. 2017 for details). In 
this work, we take into account IMAFLAGS_ISO_band which are 
flags delivered by the KiDS pipeline and include information 
about critical areas in the images, which likely corrupt single 
source photometry. Issues such as star halos and spikes are auto­
matically detected using an algorithm that first finds star posi­
tions from the saturation map, and then builds models of star 
halos and spikes taking into account the telescope orientation 
and the position in the focal plane (the Pullecenella mask proce­
dure, de Jong et al. 2015). We have carefully examined several 
images of objects with these flags set and decided to remove 
sources indicated by any of the bits5 except for the one for man­
ual masking, which was valid only for KiDS DR1 and DR2 
(de Jong et al. 2015). We have also considered FLAG_band (a 
SExtractor flag indicating possible issues in the extraction of 
the object) but found no significant deterioration in classifica­
tion quality after including sources marked by this flag in the 
training and inference process. This cleanup step removes a non- 
negligible number of sources, about 2 million out of 11 million 
that were left after the previous step #2.
Trim target data to match the training s e t . The previous steps 
of data cleaning were of a general nature to ensure adequate 
KiDS data quality for classification purposes. A final step is 
however required and it is specific to the training sample used. 
Namely, the SDSS DR14 spectroscopic training set does not 
reach beyond r ~ 22 mag (see Fig. 1 left panel). Using sig­
nificantly deeper inference data than for the training set would 
require extrapolation, which for supervised ML might be unre­
liable and more importantly, its performance would be difficult 
to evaluate. Therefore, the target KiDS data must be trimmed 
to limit the feature space to ranges covered by training. As the 
default cut we adopt r <  22, although we have also experimented 
with a more permissive cut in the u -  g color, as matching the

5 These are: 1 -  saturation spike, 2 -  saturation core, 4 -  diffraction 
spike, 8 -  primary reflection halo, 16 -  secondary reflection halo, 32 -  
tertiary reflection halo, 64 -  bad pixel.

training and inference sets in this parameter leads to the removal 
of fewer objects (see Fig. 1 right panel). We provide more discus­
sion on feature space limitation and our final choices in Sect. 3.4.

This particular cut significantly limits the size of usable data 
for the classification, leaving us with 3.4 million KiDS DR3 
objects. Such a cut would in fact make unnecessary the condi­
tion on the sufficient S/N described in item #2 above, as KiDS 
sources with r  < 22 mag typically have very high S/N in all 
the bands. However, we keep this condition separately, as it is 
related to the characteristics of the specific training set used.

We note that with future deeper QSO training sets, such as 
from the final SDSS-IV (Blanton et al. 2017) or DESI (DESI 
Collaboration et al. 2016), it will be possible to extend the range 
of the usable feature space and therefore increase the number 
density of robustly identified quasars in KiDS.

Table 1 summarizes all the preprocessing steps which led to 
the creation of the final dataset on which our quasar catalog is 
based. We denote this dataset as the target or inference sample.

2.2. Training se t from the Sloan Digital S ky  Survey

To learn object classification based on photometric data, our 
machine learning model needs ground-truth labels. In this work, 
the labels are taken from the SDSS, and in particular from the 
spectroscopic catalog of its Data Release 14 (Abolfathi et al. 
2018). It includes over 4.8 million sources with one of three 
labels assigned: star, galaxy, or quasar. To ensure the highest 
data quality and model performance, from that sample we use 
only sources with secure redshifts (velocities) by demanding 
the zWarning parameter to be null. The cross-match between 
the SDSS and KiDS inference dataset was done with the TOP- 
CAT tool (Taylor et al. 2005) within a matching radius of 1". 
The final training dataset consists of 12 144 stars, 7061 quasars 
and 32547 galaxies, which totals to 51752 objects. These rela­
tively low numbers are the consequence of the small sky over­
lap between SDSS and KiDS DR3, as the common area covers 
only the KiDS equatorial fields at -3 °  < ó < 3°. In the test 
phase, from these labeled data we randomly extract the actual 
training, validation, and test sets, as detailed in Sect. 3.2. For 
training the final classification model, the entire spectroscopic 
cross-matched sample is used. Therefore, whenever parameter 
distributions or feature space properties are discussed for “train­
ing”, this applies equally to the general training data, as well as 
to the validation and test sets.
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Table 2. A comparison of the test results for different models, achieved 
on the SDSS-based test set separated from the training and validation 
data.

Three-class: accuracy QSO vs. rest: F1

RF 96.56% 88.67%
XGB 96.44% 88.12%
ANN 96.28% 87.63%

Notes. See Sect. 3.2 for details of the metrics.

In Fig. 1 we present normalized distributions of the r-band 
magnitudes (left panel) and the u -  g color (right panel) for the 
KiDS inference dataset (pink solid) and the KiDS x  SDSS train­
ing set (green dashed), both before applying the r  < 22 mag 
cut. This shows clearly that the current SDSS data do not probe 
KiDS beyond the adopted r-band cut. On the other hand, the 
color space is better covered between the inference and train­
ing sample, although here we only showed one particular color 
as an example. The matching between the training and infer­
ence (target) set in the multidimensional feature space is dis­
cussed in more detail in Sect. 3.4. The bimodality of the KiDS x 
SDSS seen in both histograms is related to preselections of the 
SDSS spectroscopic targets at the various stages of the survey. In 
particular the flux-limited (r < 17.77) complete “SDSS Main” 
sample (Strauss et al. 2002) gives the first peak in the r-band 
histogram, while subsequent BOSS color selections used fainter 
magnitudes (Dawson et al. 2013). As KiDS is much deeper than 
any of the SDSS spectroscopic subsamples, the cross-match pre­
serves these properties.

3. Classification pipeline
In this section, we present random forest which is our choice 
of algorithm used for quasar classification in KiDS DR3, and 
provide its most important details. We also describe how its 
performance is evaluated and the procedure of feature selec­
tion. Finally, we analyze the coverage of the feature space by 
the training and inference data using an advanced visualization 
technique called t-distributed stochastic neighbor embedding 
(t-SNE, van der Maaten & Hinton 2008).

We start by defining the ML problem. The goal of this work 
is to detect quasars in KiDS DR3 data, however the training sam­
ple from SDSS provides labels for 3 types of sources: stars, 
galaxies, and QSOs. These objects usually populate different 
regions of the feature space which we use, and we have verified 
that the QSO identification is more robust if the model is for­
mulated as a three-class rather than a binary (QSOs vs. the rest) 
problem. This is an expected result as in the three-class case we 
provide the model with more information.

Several of the most popular classification algorithms were 
tested, in particular random forest (RF; Breiman 2001), arti­
ficial neural network (ANN, Haykin 1998) and Xtreme Gra­
dient Boosting (XGB, Chen & Guestrin 2016). The whole 
pipeline was implemented using the Python language, while 
model implementations were taken from several sources: RF 
from the scikit-learn library6 (Pedregosa et al. 2011), ANNs 
from the Keras library7 (Chollet 2015) with the Tensorflow back- 
end8 (Abadi et al. 2015), while XGB has a standalone package.

In the case of RF, the best results are usually achieved by build­
ing fully extended trees with leafs belonging only to one class, 
which also provided the best results for our work. We chose 
entropy as the function to measure the quality of a split, and 400 
trees in the model as we did not observe any performance gain 
above this value. For XGB, we obtained good results when using 
200 estimators of depth 7 and trained with a 0.1 learning rate, 
while artificial neural network was built with 2 hidden layers of 
20 neurons each, using the rectified linear unit (ReLU) activation 
function. Table 2 shows a comparison between the model perfor­
mances; for details of the model testing procedure and evaluation 
metrics see Sect. 3.2. We observed small differences between the 
performance of different models, with RF generally performing 
best. Such model hierarchy and small differences in scores are 
expected for this kind of a dataset with a rather low number of 
features and classes to predict.

We decided to choose random forest as the final classifier. 
This decision was based not only on the model performance, but 
also because RF does not require time-consuming selection of 
the best training parameters. It also provides a measure of feature 
importance, offering a relatively fast and straightforward way of 
choosing the most appropriate features. We discuss this in more 
detail in Sect. 3.3.

3.1. Random  forest

The random forest (RF; Breiman 2001) is a widely used clas­
sification model, with numerous applications in astronomy (e.g. 
Masci et al. 2014; Hernitschek et al. 2016; Moller et al. 2016). 
It belongs to the family of ensemble methods, in which the final 
model output is based on many decisions of standalone models. 
The basic idea is that a decision made together by many voters, 
which individually can significantly differ, is more accurate than 
from a single vote. This can be related to many real-life situa­
tions, where important decisions are made after consulting with 
many specialists from different fields. Such an approach can in 
particular prevent us from making an incorrect decision based on 
the knowledge of just one specialist, which in ML relates to the 
problem of overfitting. In the case of RF, the basic single model 
is the decision tree.

3.1.1.  Decision trees

The decision tree (DT) works by sequentially dividing a 
dataset into subsets which maximize homogeneity with respect 
to ground-truth labels. The best option, implemented in the 
libraries, is a binary DT where two subsets are created at each 
split. Assuming a set with observations belonging to different 
classes, we calculate the probability of class i as

( 1)

6 h t t p s : / / s c i k i t - l e a r n . o r g
7 h t t p s : / / k e r a s . i o
8 ht tps: / /www.tensorflow.org

where n i is the number of data points belonging to class i and N 
is the total number of points. Dataset impurity can then be quan­
tified using measures such as entropy, equal to - £  i p i log2 p i, 
and Gini index, expressed as 1 -  i P i2, which are minimized in 
the most homogeneous datasets. The algorithm of DT creation 
is that at every node, starting with the first one which includes a 
whole dataset, a split in data is done in order to create two chil­
dren nodes, each including newly created subsets of the parent 
node. The best split is decided upon by simply scanning all the 
features and choosing the best threshold value to maximize the 
Information Gain (IG) defined as
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IG(Dp) = /(Dp) -  /(Deft) -  ^ I(Dright), (2)
Np Np

where /  is either entropy or Gini index, Dp, D[eft, Dright are 
datasets of a parent, left, and right child node, respectively. A 
tree can be built as long as there is data belonging to more than 
one class in leafs which are the last nodes.

If a single tree was used, such an approach would lead to over­
fitting. Therefore, trees are usually pruned by setting a maximum 
level of their depth. Once a tree is created, the inference on a 
data point is performed by moving along the path of decisions 
through the tree. Once the leaf corresponding to a given data point 
is reached, classification probabilities are given by class proba­
bilities calculated during the training procedure in a given leaf. A 
single DT is a well-working model by itself, however its biggest 
disadvantage is its limited predictive power due to pruning, which 
is the only way to regularize the model and prevent overfitting. 
Many trees are therefore used to create a random forest.

3.1.2. Bagging

The method of differentiating DTs in RF is called Bootstrap 
Aggregation (bagging, Breiman 1996). Every tree is built using a 
subsample of data, equally sized as the original dataset, created 
by uniform sampling with replacement. Features are also sam­
pled, but in classification problems one usually selects ~ Vn fea­
tures, where n is the total number of features. Such an approach 
maximizes the differences between the trees built in an ensem­
ble. The final decision of an ensemble is made by majority vot­
ing, which means that a class that obtained the most votes is 
chosen as the final answer. In addition, probabilities for the par­
ticular classes can be obtained by simply calculating the fraction 
of the trees which voted for a given class.

Bagging makes RF significantly different from a single DT. 
Its most important aspect is to introduce a way of regularizing 
the DTs and preventing overfitting of the final RF output by addi­
tional averaging over many simpler classifiers. This means that 
the DTs no longer have to be pruned, and in fact usually very 
good results are achieved by fully-built DTs. The last thing to 
mention is that all the trees are built independently of each other, 
which prevents overfitting when too many DTs are trained. At 
some point, all the possible different trees and corresponding 
decision boundaries have been built and no model improvement 
is introduced with new trees.

3.2. Performance evaluation

In ML methods it is desirable to separate out validation and test 
datasets from the training sample, in order to estimate model 
performance on observations which were not included in model 
creation. The validation set is used to select the best model and 
its parameters, while the test set is needed to report final scores 
and should never be employed to choose algorithm parameters, 
in order to eliminate the possibility of overfitting to a particu­
lar training sample. In practice, if validation and test scores are 
significantly different, more regularization should be applied to 
the model. In our application, as the test set we choose a random 
20% subsample of the full training set described in Sect. 2.2. The 
remaining 80% of the training data are then used in a five-fold 
cross-validation procedure, in which they are divided into five 
separate equally-sized subsets, and four of them are used for the 
training, while validation scores are calculated on the fifth sub­
sample. The training process is repeated five times, with a dif­
ferent subset used for the validation each time. This gives a total

of five values for every metric used, which are then averaged to 
create the final validation results.

As far as the evaluation metrics are concerned, we use sev­
eral of them in order to quantify model performance better than 
would be possible with individual scores. The basic metric used 
for three-class evaluation is the accuracy, which measures the 
fraction of correctly classified observations. Additionally, as the 
main goal of this work is to select quasars, we transform the clas­
sification output into a binary one. This is done by simply sum­
ming probabilities of stars and galaxies into a new class called 
r e s t ,  and evaluating the performance of the QSO vs. r e s t  prob­
lem. To this aim, apart from accuracy applied on the binary prob­
lem, we use the purity (precision), completeness (recall), and F1, 
a harmonic mean of precision and recall. If TP is the number of 
correctly classified positives, FP the number of incorrectly clas­
sified positives, FN the number of incorrectly classified nega­
tives, then the metrics are given by:

* purity = TP /(TP + FP);
* completeness = TP/ (TP  + F N );
* F 1 = 2 ■ purity ■ completeness/(purity + completeness).

In our case, the positive class consists of quasars, and the nega­
tive class of stars plus galaxies. The last binary metric we use is 
the area under the receiver operating characteristic curve (ROC 
AUC) based on the output probability for the quasar class only. 
The ROC curve is created by plotting the true positive rate (TPR) 
against the false positive rate (FPR) at various probability thresh­
old settings. TPR is the same value as completeness, while FPR 
is also known as the probability of false alarm and can be calcu­
lated as FPR = 1 -  specificity = 1 -  T N / ( T N  + FP).  The last 
validation tool used here is the confusion matrix, which shows 
relations between ground-truth and predicted labels for the m ul­
ticlass problem. These metrics are used in our machine learning 
experiments both to select the most appropriate algorithm and 
set of features.

3.3. Feature selection

Except for deep learning, in which models learn to detect fea­
tures, in any other machine learning application it is important 
to properly design the feature set. First, we want to provide as 
much information to the model as possible, as it will learn which 
features are really important, and create the discriminative pat­
terns. However, the features must carry useful information to 
avoid confusing the model and deteriorating its performance. In 
the worst case scenario, using non-discriminative features can 
lead to overfitting, which means that the learning patterns work 
well on training data only, while being inadequate for the general 
problem. It is thus important to perform a proper experimental 
analysis and select the features which maximally improve model 
performance.

In applications with hundreds of features, the process of 
choosing their best subset can be complex. Here, we use the 
method of backward elimination (Harrell 2001). We start with all 
the available features, even those that, according to our knowl­
edge, may not be very important, and apply a model which cal­
culates feature importance (such as for instance the RF). After 
initial training, we sort all the features according to their impor­
tance and perform iterative removal of the least important ones 
(in some groups rather than individually). After each removal, 
we validate the performance of the new model. In this way, 
within a linear complexity with respect to the number of features, 
we find the best feature set and optimize model performance.

Feature importance for a single DT is calculated by simply 
summing all the IGs from a given feature over the whole tree.
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For the full RF, this value is averaged between all the DTs for 
each feature. From this, relative importance of features can be 
calculated as percentages, providing quantitative information on 
their usefulness in solving a problem.

Machine learning algorithms work more efficiently if they are 
provided not only with basic features but also their combinations, 
if those are correlated with the ground truth data like labels in case 
of a classification. A popular way to extend the feature set is to 
combine already existing features using simple algebraic oper­
ations (Piramuthu & Sikora 2009). Colors (differences of mag­
nitudes from various passbands) are one of such ways; another 
combination popular in ML is feature ratios, and we tested ratios 
of magnitudes as an extension of the feature space.

We verified the usefulness of a large number of features 
from the KiDS DR3 database, such as ugri magnitudes, their 
differences (colors), their ratios, and also fluxes in all available 
apertures, observation errors, ellipticity, as well as star/galaxy 
separators. By applying the above described method of feature 
importance evaluation, we created the final feature set which 
provided the best model performance. It consists of 17 features 
in total: four ugri magnitudes, six resulting colors, six magni­
tude ratios, and CLASS_STAR. Figure 2 quantifies the feature 
importance in percentages. The stellarity index is a very use­
ful feature, and its role is to provide a nearly perfect separation 
between galaxies and point-like objects like stars and quasars. 
Importances of colors and ratios for the same magnitude pairs 
are similar, which means that they are similarly useful in provid­
ing information to the model.

The results illustrated in Fig. 2 show that magnitude values 
are of much less importance for the classification than colors and 
magnitude ratios. Therefore, in addition to the fiducial approach 
where all the listed features were used, we have experimented 
with a classification setup without magnitudes. In such a case, 
the purity and completeness of the quasar classification mea­
sured on the test data were worse by ~1.5%, which is mostly 
due to increased confusion with stars. We also tested the no­
magnitude model by generating its predictions on the inference 
set and comparing the results with those where the whole feature 
set was used. Only 67% of quasar candidates identified by the 
model which includes magnitudes were also classified as QSOs 
in the “color-only” case, and almost all of the rest were classified 
as stars. Based on these findings, we conclude that the model in 
which magnitudes are not used performs worse, and in particular 
leads to a higher rate of misclassification with stars. Our default 
approach is therefore to use all the features shown in Fig. 2 .

Figure 2 indicates also that among the four KiDS DR3 pass­
bands, the u band is of least importance for our classification task. 
This is also the band which has the largest fraction of missing or 
excessively noisy observations, removed at the data preparation 
stage. One could therefore attempt classification based on only 
gri bands, which would give larger training and inference datasets 
than in our case (i.e., fewer sources would have been removed in 
the procedure described in Sect. 2.1.2) . In the present application, 
this would however lead to significant limitation of the feature 
space, removing in total 7 of the 17 features. We therefore post­
pone experiments without using the u band to the future KiDS 
data releases which will incorporate also VIKING NIR photom­
etry and therefore greatly extend the feature space available.

3.4. Feature space limitation

In addition to selecting the most relevant features, we need to 
make sure that the training data cover the feature space suf­
ficiently well for the classification in the inference data to be

Fig. 2. Features of the final model sorted according to their importance.

robust. We already discussed in Sect. 2 that the SDSS training 
data are much shallower than the full KiDS, therefore in this 
work the KiDS data is limited to r  < 22 mag to avoid extrap­
olation. In this subsection we provide details on feature space 
limitation by analyzing its full multidimensional properties.

One can understand machine learning models as complex 
decision boundaries in the training feature space. The models 
are expected to learn true patterns, which should then extend 
their applicability to new datasets, such as the KiDS inference 
sample in our case. However, for the points which lie outside of 
the original region of feature space for which decision bound­
aries were created, model predictions may implement a classifi­
cation function extrapolated from the training data, which may 
then not agree with the patterns outside of the training set. The 
most straightforward solution is to simply match the inference 
dataset to the training sample. In our case, the simplest approach 
is to limit the data to r  < 2 2 mag. However, one could also work 
in color space only, without using magnitudes, and perform a 
cut of u -  g > 0 instead (see right panel of Fig. 1), which would 
significantly extend the inference dataset, giving about twice as 
many entries than the 3.4 million in the fiducial sample limited 
to r  < 22. Below, in Sect. 3.4.1 we show why a cut in the r-band 
magnitude is more appropriate for our model than a cut in the 
u -  g color.

Cuts performed in single features allow for a better match 
between the training and inference sets in these particular dimen­
sions. However, as the final classification is performed in a space 
of significantly larger dimensionality, the usefulness of such an 
approach is rather limited. A match between individual features 
does not have to imply proper coverage of the full feature space. 
A simple counterexample is a 2D square covered by data points 
drawn from a 2D Gaussian distribution and separated into two 
subsets by a diagonal. In such case, the histograms of single fea­
tures show overlap of data in individual dimensions, while in 
fact there is no data from two subsets overlapping in 2D at all.
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Fig. 3. t -SNE visualization of the training dataset. The plot illustrates a 
projection of the multidimensional feature space onto a 2D plane, where 
x and y are arbitrary dimensions created during the visualization pro­
cess. Labeled training data are mapped with three different colors as in 
the legend.

Therefore, we look in more detail at coverage in the multidimen­
sional feature space of the training and inference data. This is 
done by projecting the feature space onto two dimensions using 
the t-SNE method.

3.4.1. Visualization with t-SNE

There are many ways of mapping N-dimensional feature spaces 
onto 2D projections. A popular one in astronomy is Self Orga­
nizing Map (SOM, Kohonen 1997), and a relevant example of 
its usage is the mapping of multicolor space to visualize which 
regions are not covered by spectroscopic redshifts (Masters et al. 
2015). Here, we use an another advanced visualization method, 
the t-distributed stochastic neighbor embedding (t-SNE; van der 
Maaten & Hinton 2008), which finds complex nonlinear struc­
tures and creates a projection onto an abstract low-dimensional 
space. Its biggest advantage over other methods is that t-SNE can 
be used on a feature space of even several thousand dimensions 
and still create a meaningful 2D embedding. Moreover, unlike 
in SOM where datapoints are mapped to cells gathering many 
observations each, in t-SNE every point from the N-dimensional 
feature space is represented as a single point of the low dimen­
sional projection. This makes t-SNE much more precise, allow­
ing it to plot the exact data point values over visualized points as 
different colors or shapes, making the algorithm output easier to 
interpret. Some disadvantages of using t-SNE are its relatively 
long computing time and its inability to map new sources added 
to a dataset after the transformation process, without running the 
algorithm again.

In case of ML methods which use many features at once 
during the calculations, it is useful to normalize every feature 
in order to avoid biases related to their very different numerical 
ranges (such as for magnitudes vs. colors). This does not apply 
to RF, which uses only one feature in each step of data splitting;

however, it does affect the t-SNE algorithm which calculates dis­
tances based on all available features. In order not to artificially 
increase the importance of the features with larger numerical 
values, we always scale every feature individually to the range 
[0,1], as a preprocessing step in the visualization. The transfor­
mation of each feature is given by Fi = (Fi - Fmin)/(Fmax - Fmin), 
where F  stands for a given feature, F i is its value for the ith data 
point, and Fmin and Fmax represent the minimum and maximum 
values of this feature in a considered dataset.

Our first t-SNE visualization is applied to the training dataset, 
using the full 17D feature space selected in Sect. 3.3, and it gives 
important information whether the automated quasar detection 
can be performed at all in the feature space provided by KiDS DR3. 
As shown in Fig. 3, most of the quasars form their own cluster in 
the 2D projection, while some do indeed overlap with stars. This 
does not necessarily mean that those observations are not distin­
guishable by classification models which work in the original fea­
ture space, but it does point at a problem that perhaps additional 
features should be added, such as magnitudes and colors at other 
wavelengths than the currently used ugri ones. We will study this 
issue in the near future with extended KiDS+VIKING data from 
forthcoming KiDS data releases.

We now turn to a comparison of the training and inference 
datasets. For that purpose we join the training set with a random 
subsample of the inference data of similar size as the training (this 
is to speed up the computation which for the full KiDS DR3 would 
be very demanding). In Fig. 4 we show projections of the full 17D 
feature space (see Sect. 3.3) for the dataset constructed this way. 
Using a new dataset required creating a new visualization, mean­
ing that x and y axis in this figure are independent of the ones 
present in the training set visualization (Fig. 3). The left panel 
includes SDSS labels for the training part of data (green and light 
and dark blue dots), and “not SDSS” (pink) standing for inference 
data which covers feature space outside of the training. Here, the 
inference data have no magnitude or color cuts applied except for 
those related to the basic data cleaning (items #1-#3 in Sect. 2.1.2). 
This visualization confirms that a large part of feature space in the 
inference dataset would not be covered by the training if no addi­
tional cuts were applied on the target KiDS sample.

In the right panel of Fig. 4 we illustrate the effect of magnitude 
and color cuts on the inference data. The darkest color indicates 
objects removed by both r  < 22 and u -  g > 0 criteria simultane­
ously, colors in between show objects clipped by demanding only 
a single cut, while the lightest points are left after applying any of 
the cuts. By comparison with the left panel, we clearly see that the 
r-band cut is much more efficient in removing the part of the fea­
ture space not covered by training than the cut in u -  g. It is also 
worth noting that the color cut would also remove some quasar 
data points from the feature space covered by training, which is 
much less the case for the magnitude cut. This is related to the 
flux-limited character of the SDSS spectroscopic QSOs.

4. Quasar selection results
In this Section we present and discuss the final quasar selection 
results in KiDS DR3. By applying the methodology described 
above, all the sources from our inference dataset of 3.4 million 
KiDS objects were assigned probabilities of belonging to the 
three training classes (star, galaxy or quasar). By selecting quasars 
as those objects which have pqso > max(pstar, p gal), we have 
obtained 192 527 QSO candidates. Here we discuss the properties 
of this catalog. This is done by first calculating statistical measure­
ments on the test set extracted from the general training sample but 
not seen by the classification algorithm. The final dataset is also
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Fig. 4. t-SNE visualization of the catalog feature space. Left panel: datapoints with SDSS labels from the training set (green and light and dark 
blue) together with those from the inference sample without training coverage (pink). Right panel: results of applying magnitude and color cuts 
on the inference sample. The darkest color shows objects removed by both r < 22 and u -  g > 0 criteria simultaneously, colors in between stand 
for objects removed by only one of those cuts, and the lightest points are left after the cuts.

Table 3. Evaluation metrics for KiDS DR3 calculated from the SDSS- 
based test set separate from the training and validation data.

Classification type Metric Score

Three-class Accuracy 96.6%
QSO vs. rest Accuracy 97.0%

ROC AUC 98.5%
Purity 90.8%

Completeness 86.6%
F1 88.7%

cross-matched with data from the Gaia survey to examine stellar 
contamination, and with several external quasar catalogs to probe 
other properties of our sample. Lastly, as a test for completeness, 
we analyze number counts in the final QSO catalog.

4.1. Classification results for a test subsam ple

The results of our classification were tested as described in 
Sect. 3.2. As far as the evaluation metrics are concerned, we mea­
sure the accuracy for the three- and two-class (QSO vs. rest) prob­
lems, while the ROC AUC, precision, completeness and F1 are 
provided only for the binary case. All the scores are listed in 
Table 3. Accuracy of the algorithm is very similar in both two- 
and three-class cases and amounts to almost 97%. The ROC AUC 
provides a very high value of ~99%. Purity of the final catalog is 
estimated to be ~91%, as the quasar test sample is contaminated 
with ~7% stars and ~2% galaxies. The completeness is a little bit 
lower, ~87%. The F 1 measure gives then ~89%.

Figure 5 visualizes the classification results in the form of 
a normalized confusion matrix (CM), from which more infor­
mation can be extracted. In the case of a normalized CM, cell

Fig. 5. Normalized confusion matrix of the KiDS DR3 classification 
calculated for the SDSS test sample.

values are given as percentages which sum up to 100% in each 
row. This gives completeness values on the diagonal for each 
of the classes. From the top row, it is clear that almost all the 
galaxies are classified correctly, and in the case of stars, a small 
fraction is misclassified as quasars, which reduces the purity 
of the QSO catalog. Quasars themselves are the most prone to 
misclassification, as about 13% of them are assigned either star 
or galaxy labels, which translates to the incompleteness of final 
QSO sample.

In order to better understand the reasons for misclassifi- 
cation, we examine the redshift ranges at which the quasars
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Fig. 6. Redshift distribution of SDSS quasars present also in our KiDS 
inference sample, separated into the classes predicted by our model. 
The solid purple line shows correctly classified QSOs, while the orange 
dashed and green dot-dashed are for true quasars misclassified as stars 
and galaxies respectively.

are assigned incorrect classes. Figure 6 compares redshift dis­
tributions of the true SDSS quasars which were classified as 
QSOs (solid purple), or misclassified as stars (dashed orange) or 
as galaxies (dash-dotted green). As expected, the QSO-galaxy 
mismatch happens predominantly at very low redshifts, where 
the QSO host galaxies can have large apparent size and flux. 
The flux-limited nature of the spectroscopic training quasars 
means that at low redshifts, intrinsically less luminous QSOs are 
included, and the flux of the host galaxy can be comparable or 
even dominant over that from the AGN. An additional possible 
explanation is that although we do not explicitly use redshifts 
in the classification, fluxes and colors of galaxies and quasars 
are correlated with redshift, so the classification model indirectly 
learns this relation. Therefore, as the training data are dominated 
at low redshift by galaxies, this can be problematic for the model.

For better insight into the galaxy/QSO mismatch, we have 
inspected spectra of 100 randomly chosen sources which were 
labeled as QSOs by SDSS but classified as galaxies by our 
algorithm. These objects show signs of AGN emission in the 
spectrum (broadened lines and prominent high ionization lines), 
however also the D4000 break and the calcium doublet are visi­
ble, characteristic of older stellar populations in the host galaxy. 
As our classification scheme does not use spectra, the shape 
of the continuum plays a crucial role in the performance. For 
that reason, when the emission of the host galaxy is detectable, 
the SDSS AGNs are often treated by the algorithm as galaxies, 
regardless of clear presence of AGN signatures in the spectrum.

Regarding QSOs incorrectly assigned with a star label, this 
happens at specific redshift ranges, such as 2.2 < z < 3.0, where 
it is difficult to distinguish quasars from stars with spectral types 
spanning from late A to early F  using broad-band optical filters 
(Richards et al. 2002, 2009a). This is exactly the redshift range 
where we observe the most of the star-QSO misclassification.

The above analysis concerned the completeness of final QSO 
sample as a function of redshift. At present we cannot exam­
ine a relation between purity and redshift, as we would have 
to know the redshifts assigned to quasar candidates, including 
those which in fact are stars or galaxies. As already mentioned, 
presently in KiDS DR3 the quasars do not have robust photo- 
zs. We plan to address this problem in future studies where 
both QSO detection and redshift estimation will be performed 
(see e.g., Fotopoulou & Paltani 2018). However, for the redshift

estimation to be robust, additional near-IR data will be needed. 
This will be available for KiDS sources starting from DR4 as a 
result of in-house processing of overlapping VIKING data.

4.2. Catalog validation with Gaia parallaxes and proper 
motions

We validate the purity of our KiDS QSO catalog by analyz­
ing parallaxes and proper motions of the contained sources. 
For this we use the second data release of the Gaia survey 
(Gaia Collaboration 2018a), which is currently mapping the 
entire sky, focusing on stars in the Milky Way, but detecting also 
extragalactic objects like quasars (Gaia Collaboration 2016). At 
present, over 1.3 billion Gaia-detected sources in the magnitude 
range 3 < G < 21 have measurements of parallaxes and proper 
motions, therefore, a cross-match with that dataset can be used to 
test statistically if our QSO candidates are indeed extragalactic. 
In particular, the QSO candidates are expected to have negligible 
parallaxes and proper motions in the absence of systematics.

As Gaia is significantly shallower than KiDS (G < 21 corre­
sponds to r  < 20), practically all of the sources from Gaia over 
the common sky area have a counterpart in KiDS. The reverse of 
course does not hold, especially since Gaia does not store mea­
surements of extended sources, and in particular only 32% of 
our inference sample is also matched to Gaia within 1" radius. 
In addition, due to considerable measurement errors in source 
motions at the faint end of Gaia, the test presented here cannot 
provide an unambiguous star/quasar division for our full infer­
ence sample. Moreover, as discussed in detail by Lindegren et al. 
(2018), the measurements of motions in Gaia DR2 have some 
non-negligible systematics. In particular, even stationary quasars 
have appreciable scatter in their measured parallaxes and proper 
motions. A special procedure is therefore needed to validate the 
contents of our quasar catalog using Gaia, as described below.

In order to analyze the systematics in Gaia DR2 paral­
laxes and proper motions, Lindegren et al. (2018) used a sam­
ple of quasars, which define a celestial reference frame, known 
as Gaia-CRF2 (Gaia Collaboration 2018b), nominally aligned 
with the extragalactic International Celestial Reference System 
and non-rotating with respect to a distant universe. This allowed 
them to design a set of criteria applied to Gaia measurements to 
make sure that the selected sources are indeed stationary. As a 
result, Lindegren et al. (2018) determined a global mean offset 
in Gaia parallaxes of -0 .029 mas. Detecting appreciably higher 
offsets in the parallax distribution for sources assumed to be 
quasars would then point to stellar contamination.

A cross-match of our inference catalog with Gaia DR2 gave 
almost 1.1 million common objects. Among these, 1 million 
were classified by the model as stars, 40k as galaxies, and 38k 
as quasars. As our goal is to evaluate the stellar contamination 
of the quasar catalog, we cannot directly apply the criteria of 
Gaia data cleaning from Lindegren et al. (2018), as the aim 
there was to reduce this contamination in a QSO sample. Instead, 
we define a Gaia high precision sample, by taking sources with 
parallax and proper motion errors smaller than 1 mas, and com­
pare the measurements for the KiDS sources to those obtained in 
the same way from the SDSS and KiDSxSDSS training sample 
(where for the SDSS case we used the full DR14 spectroscopic 
dataset cross-matched with Gaia DR2). This reduces the number 
of quasars found in both KiDS and Gaia from 38k to 7.1k.

In order to properly measure the purity of quasar candidates, 
we have to take into consideration the test results (Sect. 4.1), 
according to which our QSO candidate catalog consists of 91% 
quasars, 7% stars and 2% galaxies. Therefore, we calculate
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Fig. 7. Mean (left panel) and median (right panel) of parallax (solid purple), right ascension (dashed orange) and declination (dash-dotted green) 
proper motions, derived from the Gaia high precision sample for KiDS quasar candidates, as a function of minimum quasar probability limit.

Table 4. Mean values of parallax (m), right ascension and declination 
proper motions (pm and p0), all in milli-arcsecond units, as derived from 
the Gaia high precision sample (see text for details).

Size m Pa* hs
q s o SDSS 138k -0.02 -0 .02 -0.03

Train 2.1k -0.01 -0 .02 -0.01
Star SDSS 560k 0.71 -1.81 -6.37

Train 7.3k 0.57 -6 .12 -6.01
Galaxy SDSS 3.8k 0.16 -0 .70 -2 .50

Train 78 0.29 -3.60 -2.93
Acceptable SDSS - 0.04 -0 .14 -0 .50

Train - 0.05 -0 .50 -0.48
q s o KiDS 7.1k 0.21 -0.27 -1.08

p  > 0.8 5.8k 0.09 0.14 -0 .42

Notes. First three sets of rows show results for the ground-truth SDSS 
and KiDS x SDSS training objects. Next, acceptable quasar offsets based 
on model testing results are presented, while the last two rows show val­
ues for the KiDS quasar catalog and its probability-limited subset.

“acceptable” parallax and proper motion offsets by taking a 
weighted mean of the respective astrometric quantities with 
weights of 0.91,0.07 and 0.02 for ground truth quasars, stars and 
galaxies. Table 4 shows parallax and proper motion mean val­
ues for ground truth SDSS and training objects, together with the 
acceptable offsets and values derived for the KiDS quasar candi­
dates. The acceptable offset for parallax (m) is about 0.05 mas for 
both the full SDSS and training QSO samples, and — 0.50 mas for 
the proper motion in declination (hs). The right ascension proper 
motion (ha.) shows inconsistent results between the full SDSS 
QSO and training datasets. In addition, it varies much more than 
m  and h s, and its mean even changes sign depending on the QSO 
threshold probability, as shown below in Fig. 7 .

The full catalog of KiDS quasar candidates matched with 
Gaia shows mean offsets significantly higher than the accept­
able levels, which must be an imprint of residual stellar and 
galaxy contamination. We note however that as we use unclipped 
means, a fraction of significant outliers can highly influence the 
means. Still, those measurements can be used to purify the cata­
log by limiting the quasars to higher probability values according 
to our classification model. This makes sense from an ML point 
of view, as our model was optimized for the training dataset 
whose properties may differ from the final inference sample.

Moreover, we know that some quasars are not easily distinguish­
able from stars in the optical bands used here, and the two- 
classes may occasionally overlap in terms of their positions in 
the feature space (Fig. 4) . Such objects may have lower classi­
fication probability as they are surrounded by sources from an 
opposite class. This fact can be used to reduce the problem of 
stellar contamination by simply applying a limit on quasar prob­
ability. As shown in Table 4, at p q s o  > 0.8 we obtain an accept­
able offset for the mean value of h s, and close to acceptable for 
m. The absolute value of p a* is also at an acceptable level for 
this probability limit, and in fact its mean oscillates around 0 
for P q s o  > 0.7 (Fig. 7) .

Figure 7 shows how the mean and median values of parallax 
and proper motions change as we increase the QSO probability 
limit. Mean values converge to 0 mas, while median values at this 
level of precision are required to stay within the QSO mean offsets 
shown in the first row of Table 4 . Both mean and median values of 
the astrometric measurements decrease (in terms of their absolute 
values) for p q SO > 0.5. For higher QSO probability levels of 0.7­
0.8 they are sufficiently close to the acceptable offsets for mean 
measurements, or 0m as in case of median values, that at these 
P q SO the quasar candidates can be considered reliable. An excep­
tion is the parallax, whose median changes sign at p q SO ~ 0.5 
and continues decreasing to almost -0 .02  mas at P q SO ~ 1. This 
is however expected from the offset calculated by Lindegren et al.
(2018) which equals -0 .029 mas for parallax measurements.

We consider these results a strong success of our model, espe­
cially since this analysis of KiDS objects which are also present in 
Gaia focuses on the star/quasar separation, which is the most diffi­
cult task to solve. Moreover, Gaia measurements may be strongly 
contaminated with large positive or negative values, resulting 
from an inconsistent matching of the observations to different 
physical sources. This may especially affect quasar measurements 
which require higher resolution than other objects, and therefore 
can show larger offsets in our catalog than in the training data. 
Based on this analysis, we suggest to limit the catalog to a m in­
imum classification probability of p  > 0.8 which favors purity 
and gives a sample of ~75k quasars, or use a cut of p > 0.7 which 
gives better completeness for a sample of ~100k quasars.

4.3. Comparison with external quasar catalogs

Another method of examining the properties of our quasar cat­
alog is by matching it with other QSO datasets overlapping
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Table 5. Contributions of the classes predicted by our model, start­
ing with the whole inference dataset and then moving to its cross­
matches with external quasar catalogs: one spectroscopic (2QZ), 
providing ground truth, and 3 photometric, which are probabilistic. In 
those cross-matches, the highest quasar contribution is expected.

Size Star Quasar Galaxy

KiDS DR3 inference dataset 3.4M 35% 6% 59%
x2Q Z and 6QZ 5.4k 2% 97% 1%
x Richards et al. (2009a) 17k 9% 86% 5%
x Richards et al. (2015) 18k 6% 91% 3%
x DiPompeo et al. (2015) 43k 15% 74% 11%

Fig. 8. Normalized distributions of the r-band magnitude for cross­
matches between the KiDS DR3 and four overlapping quasar catalogs, 
as indicated in the legend.

with KiDS DR3. We use four external samples for this purpose: 
the spectroscopic 2QZ and 6QZ (Croom et al. 2004, hereafter 
2QZ), and three photometric samples (Richards et al. 2009a, 
2015; DiPompeo et al. 2015, hereafter R09, R15 and DP15 
respectively). 2QZ includes confirmed quasars, stars and galax­
ies, while the photometric catalogs are probabilistic, based on 
selection from SDSS (R09) and SDSS+WISE (R15 & DP15). 
In addition, only 2QZ significantly overlaps with the KiDS foot­
print, while the others (R09, R15 and DP15) cover the SDSS 
area9. They also have different depths, as illustrated in Fig. 8 
which shows r-band distributions of cross-matches between the 
full KiDS DR3 and the four discussed catalogs. Among these, 
2QZ is considerably shallower (r < 21) than our inference 
dataset, which is the main reason why we have not included 
it in our training set. As a result, the number of cross-matches 
between our inference catalog and the external datasets is not 
expected to be very large. Indeed, taking from the comparison 
catalogs sources which are labeled as quasars, we find respec­
tively 5.4k objects of our inference sample in 2QZ, 17k in R09, 
18k in R15 and 43k in DP15. Of these, respectively 5.2k (97%), 
14.6k (86%), 16.4k (91%) and 31.8k (74%) have quasar labels in 
our catalog (see Table 5). A relatively lower consistency between 
our QSOs and DP15 might be related to the fact that in the DP15 
some quasar candidates have probabilities as low as pqso > 0.2. 
It should be stressed that the probabilistic character of the R09, 
R15 and DP15 datasets means that they can be only used for 
qualitative rather than quantitative comparisons. Unlike the spec­
troscopic 2QZ, these 3 photometric QSO datasets cannot be 
treated as ground truth and we will use them mainly to test the 
consistency between our model and the external approaches, and 
to further validate the minimum QSO probability at which our 
quasar catalog is robust.

The availability of three-class spectroscopic labels in 2QZ 
allows us to calculate the same metrics as for the SDSS test sam­
ple discussed in Sect. 4.1. The cross-match with KiDS reduces 
2QZ to 7.8k objects which, in terms of spectroscopic 2QZ labels, 
consists of 5.4k QSOs, 2.4k stars and only 15 galaxies. We 
obtain high metric values in this case: three-class accuracy of 
95%, QSO purity of 95% and completeness of 97%. This is sum­
marized in Table 6, and Fig. 9 which shows the relevant confu­
sion matrix. These results give an independent confirmation of

Table 6. Evaluation metrics for KiDS DR3 quasar classification, calcu­
lated from the 2QZ test set.

Classification type Metric Score

Three-class Accuracy 94.5%
QSO vs. rest Accuracy 94.9%

ROC AUC 96.4%
Purity 95.3%

Completeness 97.4%
F1 96.3%

9 Another QSO sample that could be used is 2SLAQ (Croom et al. 
2009) but it has much less overlap with KiDS DR3 than those consid­
ered here.

Fig. 9. Confusion matrix of the KiDS DR3 classification calculated for 
the overlapping 2QZ sources.

the very good performance of our QSO classification also at the 
bright end, here evaluated on a truly “blind” test set which was 
not part of the general training data. In particular, that compar­
ison sample had been preselected from different input imaging 
and according to different criteria than SDSS, although we note 
that some 2QZ quasars are now included in the SDSS database.

As already mentioned, the remaining QSO catalogs used 
here for validation are probabilistic, therefore matching with 
them leads to more qualitative than quantitative evaluation. Still, 
we observe good consistency between our detections and those 
external models, especially for the R09 and R15 cases. Together 
with 2QZ, we use the overlapping QSO samples to further 
improve the purity of our quasar catalog. For this, we employ 
the probabilities delivered by the RF model, as was already
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Fig. 10. Proportion of KiDS QSOs in cross-matches with external 
quasar samples as a function of KiDS minimal classification probability. 
See text for details of the datasets.

discussed in Sect. 4.2. Except for the 2QZ case, this serves 
mostly to improve the consistency between our model and those 
external methods. Figure 10 shows how the consistency between 
the models rises as we increase the minimum probability at 
which we accept the KiDS QSO classification. For 2QZ, we see 
excellent consistency for all the probability values and almost 
perfect (i.e., KiDS QSO contribution ~1) for pq SO > 0.8. For 
the probabilistic catalogs, we observe that many external quasars 
are classified by our method with pq SO > 0.8, which we deduce 
from the increase in consistency above this value. Those results 
fully agree with the conclusion from Sect. 4.2 which states that it 
is a good option to limit our identifications to pqso > 0.8 when 
optimizing the purity of the quasar catalog.

4.4. Validation using WISE photometric data

We also validate our KiDS QSO catalog using mid-IR data from 
the full-sky Wide-field Infrared Survey Explorer (WISE; Wright 
et al. 2010). Despite being relatively shallow (~17 (Vega) in the 
3.4gm  channel), WISE is very efficient in detecting quasars at 
various redshifts. In particular, QSOs in WISE stand out hav­
ing very “red” mid-IR W 1 -W 2 ([3.4gm] -  [4.6gm]) color (e.g., 
Wright et al. 2010; Jarrett et al. 2011, 2017). The general rule- 
of-thumb for QSO selection in WISE is W 1 -  W2 > 0.8 (Stern 
et al. 2012), but more refined criteria are needed to obtain pure 
and complete quasar samples from WISE (e.g., Assef et al. 
2013, 2018). In particular, a non-negligible number of optically 
selected QSOs have W 1-W 2 significantly lower than the 0.8 
limit (e.g., Kurcz et al. 2016). That being said, QSOs are gener­
ally well separated from galaxies and stars in the W  1 -W 2 color 
with some minimal overlap for W 1 -  W2 <  0.5.

Although there exist QSO or AGN catalogs selected from 
WISE only (Secrest et al. 2015; Assef et al. 2018), here we use 
the entire AllWISE data release (Cutri 2013) for the cross-match, 
as our goal is to derive the mid-IR W  1 -W 2 color of all the KiDS 
quasar candidates. We have cross-matched both our training set 
and the output catalog with AllWISE using a 2" matching radius 
(a compromise between KiDS sub-arcsecond resolution and the 
~6" p S f  of WISE). We first note that ~81% of our training 
set have counterparts in AllWISE, while for the inference sam­
ple this percentage is lower, ~45%, mostly due to WISE being 
considerably shallower than KiDS in general. We also confirm 
the observation from Kurcz et al. (2016) that a large fraction of

Fig. 11. Distribution of the mid-infrared W 1-W 2 color (3.4 gm-4.6 gm, 
Vega) of quasar candidates in our KiDS sample, derived from a cross­
match with all-sky WISE data. We show histograms for all KiDS QSOs 
matched with WISE, as well as for two examples of the probability cut: 
PqSO > 0.7, which is recommended to increase the purity of the sample, 
and pqSO > 0.9 to illustrate how the resulting W1-W2 changes when 
the minimum probability considerably increases.

Fig. 12. Number counts of SDSS quasars and KiDS quasars classified in 
this paper. Together with the full QSO candidate sample, we also show 
samples limited to quasar probabilities above 0.7 and 0.8, which are the 
cuts we suggest applying to improve the purity of the sample.

SDSS-selected quasars have W 1 -  W2 < 0.8 (~22% in the cross­
match of our training set quasars with WISE detections).

For the output catalog, the distribution of the W  1 -W 2 color 
for QSO candidates in the matched sample is in good agree­
ment with that of the training set, with a slight preference to 
“bluer” colors which might actually reflect true properties of 
these optically-selected quasars rather than problems with our 
algorithm. Interestingly, this distribution shifts towards redder 
values of W  1 -W 2 when cuts on higher pQSO are applied. This 
is illustrated in Fig. 11, which shows that for pqSO > 0.9, the 
distribution of W  1 -W 2 for the KiDS QSO candidates is very 
similar to that of the SDSS spectroscopic quasars matched to 
WISE. This is remarkable given that nowhere in our classifica­
tion procedure any mid-IR information was used, which addi­
tionally confirms the purity of KiDS quasar catalog.

4.5. Num ber count analysis

As another test of completeness, we now compare the number 
counts of the quasars used for training and those in our final
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sample. This is done for the r  band on which KiDS detections 
in the multiband catalog are based. The SDSS DR14 quasars 
used here as the training sample were preselected based on sev­
eral color cuts and other criteria (e.g., Blanton et al. 2017), 
which results in various levels of incompleteness as a function 
of redshift and magnitude. On the other hand, a QSO sample 
selected from imaging data as the one resulting from our work 
is expected to provide a much more complete sample, ideally 
volume-limited. In Fig. 12 we compare N(r) for the input SDSS 
spectroscopic quasars with results from our classification. In the 
latter case, we show number counts for the general QSO candi­
date sample and for the cut at pqso > 0.7 and pqso > 0.8, deter­
mined above as optimal for improving the purity of this dataset.

The counts shown give the total number of sources per 
bin for the full respective samples, that is not normalized by 
area. Therefore, the comparison has mostly qualitative charac­
ter. It serves as a verification that the number counts in our 
photometrically-selected quasar sample steadily rise up to the 
limiting magnitude of the sample, also for the cases of minimum 
probability thresholds applied. In other words, the incomplete­
ness visible for the SDSS training sample at the faint end is not 
propagated to the final selection of KiDS QSOs.

5. Conclusions and future prospects
We have presented a photometry-based machine learning selec­
tion of quasars from optical KiDS DR3 ugri data. This is the first 
such comprehensive study using this dataset, serving as a step 
towards future scientific analyses employing these objects. For 
our selection we employed the random forest supervised learn­
ing algorithm, using the spectroscopic SDSS DR14 data overlap­
ping with KiDS as the training set. We put particular emphasis 
on choosing the parameter space used for the classification, by 
examining the importance of various photometric features avail­
able from the KiDS database. We eventually decided on a 17 
dimensional feature space, including magnitudes, their ratios, 
colors, and the stellarity index. We also verified that a classifier 
which does not use magnitudes directly performs worse, show­
ing increased confusion between quasars and stars.

Applying t-SNE, an advanced tool to project multidimen­
sional data onto 2D planes, we examined how the feature space 
is covered by the training data. This was necessary to appropri­
ately limit the target (inference) sample in order to avoid extrap­
olation, the reliability of which is difficult to establish in case of 
supervised learning approaches. In particular, the currently avail­
able training data from SDSS did not allow us to probe beyond 
the limit of r = 22 mag, which is 3 mag shallower than KiDS 
5 ^  depth. For this limitation to be overcome, future and deeper 
QSO training data will be needed, and indeed these should be 
available from such spectroscopic campaigns overlapping with 
the KiDS footprint as SDSS eBOSS, DESI, or 4MOST.

The random forest classifier identified about 190 000 quasar 
candidates among the 3.4 million objects in our KiDS DR3 infer­
ence sample. We validated the purity and completeness of this 
catalog both on a test sample extracted from the SDSS spectro­
scopic data, as well as on external datasets, such as Gaia, 2QZ, 
WISE, and photometric QSO catalogs derived from SDSS and 
WISE. All these tests, together with a number count analysis 
of the output QSO catalog, indicated high levels of purity and 
completeness (respectively 91% and 87% for the test sample). 
The main contaminants are stars, while incompleteness seems 
localized to specific redshifts at which stars and quasars over­
lap in the ugri color space, or the emission of the AGN host 
galaxy misleads the classifier which is not provided with all the

spectral features. According to the analysis made with Gaia, for 
scientific usefulness the quasar sample should be limited to a 
minimum probability of pqSO > [0.7,0.8], where the lower end 
favors completeness and the higher end improves purity. Those 
samples include 100k and 75k quasar candidates, respectively.

The catalog is released publicly at h t t p : / / k i d s . s t r w .  
le id e n u n iv .n l /D R 3 /q u a s a rc a ta lo g .p h p , and it consists of 
KiDS objects which were subject to our model classification (the 
inference set). Apart from basic columns present in KiDS DR3, 
we add the resulting probabilities for each class in QSO, STAR 
and GALAXY columns. The final classification, given by the class 
with the highest probability, is given in the CLASS column. To 
obtain the full catalog of all the 190k quasars candidates, one 
has to query CLASS = “QSO ”, while the high precision catalog 
is accessible by taking QSO > 0.8. The code, written in Python 
and Jupyter Notebook, is shared publicly at h t t p s : / / g i t h u b .  
c o m /sn a k o n e c z n y /k id s -q u a sa rs . The code is meant to be 
self explanatory, but in case of any questions please do not hesi­
tate to contact the main author.

Starting from DR4, future KiDS data releases will incor­
porate not only the optical but also near-IR photometry from 
the VIKING survey. This will provide nine band magnitude 
space spanning from the u band up to Ks of 2.2 jum. Availability 
of these longer-wavelength data is expected to improve quasar 
detection (e.g., Peth et al. 2011; Maddox et al. 2012), and in a 
forthcoming study we will present supervised QSO classification 
applied to KiDS DR4 + VIKING data. A much larger feature 
space will also allow us to test classification on objects removed 
from the present catalog due to missing features, which should 
increase the number of classified objects and the completeness 
of the resulting quasar catalog. Another important aspect, essen­
tial for the full scientific usefulness of photometrically identified 
quasars, is to estimate their redshifts. We plan to work on this in 
the near future, using the nine band data and potentially adding 
also information from the WISE all-sky survey.
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