6,235 research outputs found

    Investigation on Several Aspects of the Epidemiology and Control of Yellow Leaf Spot on Wheat

    Get PDF
    Yellow leaf spot, caused by Pyrenophora trichostoma (Fr.) Fckl., (Helminthosporium tritici repentis Died.) an ascomycetous fungus of widespread distribution, has played a minor role in the complex of foliar diseases afflicting Triticum species in South Dakota. However, with the introduction of cultural practices that leave large amounts of crop residue in the soil surface, the possibility exists that it may become a serious threat to wheat production in the Northern Great Plains region of the United States. This paper is a report of research on several aspects of the epidemiology and control of yellow leaf spot on wheat, with the following main objectives: 1) To induce conidial production ‘in vitro’. 2) To determine the relative resistance of a number of spring wheat breeding lines and cultivars. 3) To determine the influence of inoculum level and climatic factors on inoculum liberation under field conditions. 4) To determine if the spore germination bioassay is a useful technique for laboratory screening of fungicidal activity against the conidial stage of the pathogen

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: III. X-ray spectral modelling

    Full text link
    Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.Comment: 13 pages, 5 figures, Accepted for publication in Ap

    Binary Black-Hole Mergers in Magnetized Disks: Simulations in Full General Relativity

    Full text link
    We present results from the first fully general relativistic, magnetohydrodynamic (GRMHD) simulations of an equal-mass black hole binary (BHBH) in a magnetized, circumbinary accretion disk. We simulate both the pre and post-decoupling phases of a BHBH-disk system and both "cooling" and "no-cooling" gas flows. Prior to decoupling, the competition between the binary tidal torques and the effective viscous torques due to MHD turbulence depletes the disk interior to the binary orbit. However, it also induces a two-stream accretion flow and mildly relativistic polar outflows from the BHs. Following decoupling, but before gas fills the low-density "hollow" surrounding the remnant, the accretion rate is reduced, while there is a prompt electromagnetic (EM) luminosity enhancement following merger due to shock heating and accretion onto the spinning BH remnant. This investigation, though preliminary, previews more detailed GRMHD simulations we plan to perform in anticipation of future, simultaneous detections of gravitational and EM radiation from a merging BHBH-disk system.Comment: 5 pages, 5 figure

    Conceptual design study of a Harrier V/STOL research aircraft

    Get PDF
    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed

    Scattering theory of current-induced forces in mesoscopic systems

    Full text link
    We develop a scattering theory of current-induced forces exerted by the conduction electrons of a general mesoscopic conductor on slow "mechanical" degrees of freedom. Our theory describes the current-induced forces both in and out of equilibrium in terms of the scattering matrix of the phase-coherent conductor. Under general nonequilibrium conditions, the resulting mechanical Langevin dynamics is subject to both non-conservative and velocity-dependent Lorentz-like forces, in addition to (possibly negative) friction. We illustrate our results with a two-mode model inspired by hydrogen molecules in a break junction which exhibits limit-cycle dynamics of the mechanical modes.Comment: 4+ pages, 1 figure; v2: minor modification

    Thermal radio emission from novae & symbiotics with the Square Kilometre Array

    Full text link
    The thermal radio emission of novae during outburst enables us to derive fundamental quantities such as the ejected mass, kinetic energy, and density profile of the ejecta. Recent observations with newly-upgraded facilities such as the VLA and e-MERLIN are just beginning to reveal the incredibly complex processes of mass ejection in novae (ejections appear to often proceed in multiple phases and over prolonged timescales). Symbiotic stars can also exhibit outbursts, which are sometimes accompanied by the expulsion of material in jets. However, unlike novae, the long-term thermal radio emission of symbiotics originates in the wind of the giant secondary star, which is irradiated by the hot white dwarf. The effect of the white dwarf on the giant's wind is strongly time variable, and the physical mechanism driving these variations remains a mystery (possibilities include accretion instabilities and time-variable nuclear burning on the white dwarf's surface). The exquisite sensitivity of SKA1 will enable us to survey novae throughout the Galaxy, unveiling statistically complete populations. With SKA2 it will be possible to carry out similar studies in the Magellanic Clouds. This will enable high-quality tests of the theory behind accretion and mass loss from accreting white dwarfs, with significant implications for determining their possible role as Type Ia supernova progenitors. Observations with SKA1-MID in particular, over a broad range of frequencies, but with emphasis on the higher frequencies, will provide an unparalleled view of the physical processes driving mass ejection and resulting in the diversity of novae, whilst also determining the accretion processes and rates in symbiotic stars.Comment: 13 pages, 3 figures, in proceedings of "Advancing Astrophysics with the Square Kilometre Array", PoS(AASKA14)116, in pres

    Spin-polarized surface states close to adatoms on Cu(111)

    Full text link
    We present a theoretical study of surface states close to 3d transition metal adatoms (Cr, Mn, Fe, Co, Ni and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Rostoker method. For each of the adatoms we found resonances in the s-like states to be attributed to a localization of the surface states in the presence of an impurity. We studied the change of the s-like densities of states in the vicinity of the surface state band-edge due to scattering effects mediated via the adatom's d-orbitals. The obtained results show that a magnetic impurity causes spin-polarization of the surface states. In particular, the long-range oscillations of the spin-polarized s-like density of states around an Fe adatom are demonstrated.Comment: 5 pages, 5 figures, submitted to PR

    Chandra detection of extended X-ray emission from the recurrent nova RS Ophiuchi

    Full text link
    Radio, infrared, and optical observations of the 2006 eruption of the symbiotic recurrent nova RS Ophiuchi (RS Oph) showed that the explosion produced non-spherical ejecta. Some of this ejected material was in the form of bipolar jets to the east and west of the central source. Here we describe Xray observations taken with the Chandra X-ray Observatory one and a half years after the beginning of the outburst that reveal narrow, extended structure with a position angle of approximately 300 degrees (east of north). Although the orientation of the extended feature in the X-ray image is consistent with the readout direction of the CCD detector, extensive testing suggests that the feature is not an artifact. Assuming it is not an instrumental effect, the extended X-ray structure shows hot plasma stretching more than 1,900 AU from the central binary (taking a distance of 1.6 kpc). The X-ray emission is elongated in the northwest direction - in line with the extended infrared emission and some minor features in the published radio image. It is less consistent with the orientation of the radio jets and the main bipolar optical structure. Most of the photons in the extended X-ray structure have energies of less than 0.8 keV. If the extended X-ray feature was produced when the nova explosion occurred, then its 1".2 length as of 2007 August implies that it expanded at an average rate of more than 2 mas/d, which corresponds to a flow speed of greater than 6,000 km/s (d/1.6 kpc) in the plane of the sky. This expansion rate is similar to the earliest measured expansion rates for the radio jets.Comment: accepted in Ap

    Costs are not necessarily correlated with threats in conservation landscapes

    Get PDF
    The priority of an area for conservation is determined by three primary factors: its biodiversity value, the level of threat it is facing, and its cost. Although much attention has been paid to the spatial relationship between biodiversity value and threats, and between biodiversity value and costs, little is known about how costs and threats are spatially correlated. The orthodox assumption in conservation science is that costs and threats are positively correlated. Here, we adapt a classic economic theory of land use to explain how conservation scientists came to expect a positive correlation between costs and threats. We then use high‐resolution, ground‐truthed datasets of land sales and habitat clearance to show that this assumption is false in the state of Queensland, Australia. Our results provide an empirical counterargument to a widespread assumption in conservation science, and illustrate why spatial prioritization needs to include independent measures of costs and threats
    corecore