2,293 research outputs found
Recommended from our members
Why are nitrogenâfixing trees rare at higher compared to lower latitudes?
Symbiotic nitrogen (N) fixation provides a dominant source of new N to the terrestrial biosphere, yet in many cases the abundance of Nâfixing trees appears paradoxical. Nâfixing trees, which should be favored when N is limiting, are rare in higher latitude forests where N limitation is common, but are abundant in many lower latitude forests where N limitation is rare. Here, we develop a graphical and mathematical model to resolve the paradox. We use the model to demonstrate that N fixation is not necessarily cost effective under all degrees of N limitation, as intuition suggests. Rather, N fixation is only cost effective when N limitation is sufficiently severe. This general finding, specific versions of which have also emerged from other models, would explain sustained moderate N limitation because Nâfixing trees would either turn N fixation off or be outcompeted under moderate N limitation. From this finding, four general hypothesis classes emerge to resolve the apparent paradox of N limitation and Nâfixing tree abundance across latitude. The first hypothesis is that N limitation is less common at higher latitudes. This hypothesis contradicts prevailing evidence, so is unlikely, but the following three hypotheses all seem likely. The second hypothesis, which is new, is that even if N limitation is more common at higher latitudes, more severe N limitation might be more common at lower latitudes because of the capacity for higher N demand. Third, N fixation might be cost effective under milder N limitation at lower latitudes but only under more severe N limitation at higher latitudes. This third hypothesis class generalizes previous hypotheses and suggests new specific hypotheses. For example, greater tradeâoffs between N fixation and N use efficiency, soil N uptake, or plant turnover at higher compared to lower latitudes would make N fixation cost effective only under more severe N limitation at higher latitudes. Fourth, Nâfixing trees might adjust N fixation more at lower than at higher latitudes. This framework provides new hypotheses to explain the latitudinal abundance distribution of Nâfixing trees, and also provides a new way to visualize them. Therefore, it can help explain the seemingly paradoxical persistence of N limitation in many higher latitude forests
Groundwater recharge from heavy rainfall in the southwestern Lake Chad Basin: evidence from isotopic observations
We examine groundwater recharge processes and their relationship to rainfall intensity in the semi-arid, southwestern Lake Chad Basin of Nigeria using a newly compiled database of stable isotope data (δ2H, δ18O) from groundwater and rainfall. δ18O signatures in groundwater proximate to surface waters are enriched in 18O relative to regional rainfall and trace focused groundwater recharge from evaporated waters via ephemeral river discharge and Lake Chad; groundwater remote from river channels is comparatively depleted and associated with diffuse recharge, often via sand dunes. Stable isotope ratios of O and H (δ2H, δ18O) in groundwater samples regress to a value along the local meteoric waterline that is depleted relative to weighted mean composition of rainfall, consistent with rainfall exceeding the 60th percentile of monthly precipitation intensity. The observed bias in groundwater recharge to heavy monthly rainfall suggests that the intensification of tropical rainfall under global warming favours groundwater recharge in this basin
Alternating polarity for enhanced electrochemical synthesis
Synthetic electrochemistry has recently become an exciting technology for chemical synthesis. The majority of reported syntheses use either constant current or constant potential, however a few use nonlinear profiles â mostly alternating polarity â to maintain efficiency throughout the process, such as controlling deposits on electrodes or ensuring even use of electrodes. However, even though parameters that are associated with such profiles, such as the frequency, can have a major impact on the reaction outcome, they are often not investigated. Herein, we report the crucial impact that the applied frequency of the alternating polarity has on the observed reaction rate of Cu(I)âNHC complex formation and demonstrate that this can be manipulated to give enhanced yield that is stable over extended reaction times
Patient and public involvement in primary care research - an example of ensuring its sustainability
Background
The international literature on patient and public involvement (PPI) in research covers a wide range of issues, including active lay involvement throughout the research cycle; roles that patients/public can play; assessing impact of PPI and recommendations for good PPI practice. One area of investigation that is less developed is the sustainability and impact of PPI beyond involvement in time-limited research projects.
Methods
This paper focuses on the issues of sustainability, the importance of institutional leadership and the creation of a robust infrastructure in order to achieve long-term and wide-ranging PPI in research strategy and programmes.
Results
We use the case of a Primary Care Research Centre to provide a historical account of the evolution of PPI in the Centre and identified a number of key conceptual issues regarding infrastructure, resource allocation, working methods, roles and relationships.
Conclusions
The paper concludes about the more general applicability of the Centreâs model for the long-term sustainability of PPI in research
LHCD and ICRF heating experiments in H-mode plasmas on EAST
An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report
Nitisinone Arrests but Does Not Reverse Ochronosis in Alkaptonuric Mice.
Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder resulting from a deficiency of homogentisate 1,2 dioxygenase (HGD), an enzyme involved in the catabolism of phenylalanine and tyrosine. Loss of HGD function prevents metabolism of homogentisic acid (HGA), leading to increased levels of plasma HGA and urinary excretion. Excess HGA becomes deposited in collagenous tissues and subsequently undergoes polymerisation, principally in the cartilages of loaded joints, in a process known as ochronosis. This results in an early-onset, devastating osteoarthropathy for which there is currently no effective treatment. We recently described the natural history of ochronosis in a murine model of AKU, demonstrating that deposition of ochronotic pigment begins very early in life and accumulates with age. Using this model, we were able to show that lifetime treatment with nitisinone, a potential therapy for AKU, was able to completely prevent deposition of ochronotic pigment. However, although nitisinone has been shown to inhibit ochronotic deposition, whether it can also facilitate removal of existing pigment has not yet been examined. We describe here that midlife administration of nitisinone to AKU mice arrests further deposition of ochronotic pigment in the tibiofemoral joint, but does not result in the clearance of existing pigment. We also demonstrate the dose-dependent response of plasma HGA to nitisinone, highlighting its efficacy for personalised medicine, where dosage can be tailored to the individual AKU patient
Nitrogen-fixing tree abundance in higher-latitude North America is not constrained by diversity
The rarity of nitrogen (N)-fixing trees in frequently N-limited higher-latitude (here, > 35°) forests is a central biogeochemical paradox. One hypothesis for their rarity is that evolutionary constraints limit N-fixing tree diversity, preventing N-fixing species from filling available niches in higher-latitude forests. Here, we test this hypothesis using data from the USA and Mexico. N-fixing trees comprise only a slightly smaller fraction of taxa at higher vs. lower latitudes (8% vs. 11% of genera), despite 11-fold lower abundance (1.2% vs. 12.7% of basal area). Furthermore, N-fixing trees are abundant but belong to few species on tropical islands, suggesting that low absolute diversity does not limit their abundance. Rhizobial taxa dominate N-fixing tree richness at lower latitudes, whereas actinorhizal species do at higher latitudes. Our results suggest that low diversity does not explain N-fixing trees' rarity in higher-latitude forests. Therefore, N limitation in higher-latitude forests likely results from ecological constraints on N fixation
Nitrogen-fixing tree abundance in higher-latitude North America is not constrained by diversity
The rarity of nitrogen (N)-fixing trees in frequently N-limited higher-latitude (here, > 35°) forests is a central biogeochemical paradox. One hypothesis for their rarity is that evolutionary constraints limit N-fixing tree diversity, preventing N-fixing species from filling available niches in higher-latitude forests. Here, we test this hypothesis using data from the USA and Mexico. N-fixing trees comprise only a slightly smaller fraction of taxa at higher vs. lower latitudes (8% vs. 11% of genera), despite 11-fold lower abundance (1.2% vs. 12.7% of basal area). Furthermore, N-fixing trees are abundant but belong to few species on tropical islands, suggesting that low absolute diversity does not limit their abundance. Rhizobial taxa dominate N-fixing tree richness at lower latitudes, whereas actinorhizal species do at higher latitudes. Our results suggest that low diversity does not explain N-fixing trees' rarity in higher-latitude forests. Therefore, N limitation in higher-latitude forests likely results from ecological constraints on N fixation
Tracking Target Signal Strengths on a Grid using Sparsity
Multi-target tracking is mainly challenged by the nonlinearity present in the
measurement equation, and the difficulty in fast and accurate data association.
To overcome these challenges, the present paper introduces a grid-based model
in which the state captures target signal strengths on a known spatial grid
(TSSG). This model leads to \emph{linear} state and measurement equations,
which bypass data association and can afford state estimation via
sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of
the novel model, two types of sparsity-cognizant TSSG-KF trackers are
developed: one effects sparsity through -norm regularization, and the
other invokes sparsity as an extra measurement. Iterative extended KF and
Gauss-Newton algorithms are developed for reduced-complexity tracking, along
with accurate error covariance updates for assessing performance of the
resultant sparsity-aware state estimators. Based on TSSG state estimates, more
informative target position and track estimates can be obtained in a follow-up
step, ensuring that track association and position estimation errors do not
propagate back into TSSG state estimates. The novel TSSG trackers do not
require knowing the number of targets or their signal strengths, and exhibit
considerably lower complexity than the benchmark hidden Markov model filter,
especially for a large number of targets. Numerical simulations demonstrate
that sparsity-cognizant trackers enjoy improved root mean-square error
performance at reduced complexity when compared to their sparsity-agnostic
counterparts.Comment: Submitted to IEEE Trans. on Signal Processin
- âŚ