153 research outputs found

    Morphometry and growth of sea pen species from dense habitats in the Gulf of St. Lawrence, eastern Canada

    Get PDF
    We examined four species of sea pen (Anthoptilum grandiflorum, Halipteris finmarchica, Pennatula aculeata and Pennatula grandis) collected from the Gulf of St. Lawrence and mouth of the Laurentian Channel, eastern Canada. An exponential length–weight relationship was found for all four species, where growth in weight was progressively greater than growth in length with increasing colony size. Halipteris finmarchica, P. grandis and P. aculeata presented the better allometric fits, explaining over 80% of the variance. In addition, a count of growth increments visible in transverse sections in 86 A. grandiflorum and 80 P. aculeata samples was made. Presumed ages ranged between 5 and 28 years for A. grandiflorum and 2 and 21 years for P. aculeata. Radiocarbon assays were inconclusive and could not be used to confirm these ages; further age validation is required. Radial growth of the rod is slow during the first years, increasing at intermediate sizes of the colony and slowing down again for large colonies. Similar results were obtained from the relationship between colony length and number of growth increments where a logistic model was the best fit to the data. On average Spearman’s rank correlations showed 11% of shared variance between sea pen length or weight and environmental variables. Bottom temperature and salinity, depth and summer primary production were significantly correlated to sea pen size for most species.En prensa1,48

    Self-reported ill health in male UK Gulf War veterans: a retrospective cohort study

    Get PDF
    BACKGROUND: Forces deployed to the first Gulf War report more ill health than veterans who did not serve there. Many studies of post-Gulf morbidity are based on relatively small sample sizes and selection bias is often a concern. In a setting where selection bias relating to the ill health of veterans may be reduced, we: i) examined self-reported adult ill health in a large sample of male UK Gulf War veterans and a demographically similar non-deployed comparison group; and ii) explored self-reported ill health among veterans who believed that they had Gulf War syndrome. METHODS: This study uses data from a retrospective cohort study of reproduction and child health in which a validated postal questionnaire was sent to all UK Gulf War veterans (GWV) and a comparison cohort of Armed Service personnel who were not deployed to the Gulf (NGWV). The cohort for analysis comprises 42,818 males who responded to the questionnaire. RESULTS: We confirmed that GWV report higher rates of general ill health. GWV were significantly more likely to have reported at least one new medical symptom or disease since 1990 than NGWV (61% versus 37%, OR 2.7, 95% CI 2.5–2.8). They were also more likely to report higher numbers of symptoms. The strongest associations were for mood swings (OR 20.9, 95%CI 16.2–27.0), memory loss/lack of concentration (OR 19.6, 95% CI 15.5–24.8), night sweats (OR 9.9, 95% CI 6.5–15.2), general fatigue (OR 9.6, 95% CI 8.3–11.1) and sexual dysfunction (OR 4.6, 95%CI 3.2–6.6). 6% of GWV believed they had Gulf War syndrome (GWS), and this was associated with the highest symptom reporting. CONCLUSIONS: Increased levels of reported ill health among GWV were confirmed. This study was the first to use a questionnaire which did not focus specifically on the veterans' symptoms themselves. Nevertheless, the results are consistent with those of other studies of post-Gulf war illness and thus strengthen overall findings in this area of research. Further examination of the mechanisms underlying the reporting of ill health is required

    Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression

    Get PDF
    The ABCG2 membrane protein is a key xeno- and endobiotic transporter, modulating the absorption and metabolism of pharmacological agents and causing multidrug resistance in cancer. ABCG2 is also involved in uric acid elimination and its impaired function is causative in gout. Analysis of ABCG2 expression in the erythrocyte membranes of healthy volunteers and gout patients showed an enrichment of lower expression levels in the patients. By genetic screening based on protein expression, we found a relatively frequent, novel ABCG2 mutation (ABCG2-M71V), which, according to cellular expression studies, causes reduced protein expression, although with preserved transporter capability. Molecular dynamics simulations indicated a stumbled dynamics of the mutant protein, while ABCG2-M71V expression in vitro could be corrected by therapeutically relevant small molecules. These results suggest that personalized medicine should consider this newly discovered ABCG2 mutation, and genetic analysis linked to protein expression provides a new tool to uncover clinically important mutations in membrane proteins. © 2018 The Author(s)

    Scavenger receptors and β-glucan receptors participate in the recognition of yeasts by murine macrophages

    Get PDF
    Objectives: Numerous receptors have been implicated in recognition of pathogenic fungi by macrophages, including the β\beta-glucan receptor dectin-1. The role of scavenger receptors (SRs) in anti-fungal immunity is not well characterized. Methods: We studied uptake of unopsonized Saccharomycetes cerevisiae (zymosan) and live Candida albicans yeasts as well as zymosan-stimulated H2O2H_2O_2 production in J774 macrophage-like cells and peritoneal exudate macrophages (PEMs). The role of different receptors was assessed with the use of competitive ligands, transfected cells and receptor-deficient macrophages. Results: The uptake of zymosan by untreated J774 cells was mediated approximately half by SRs and half by a β\beta-glucan receptor which was distinct from dectin-1 and not linked to stimulation of H2O2H_2O_2 production. Ligands of β\beta-glucan receptors and of SRs also inhibited uptake of C. albicans by macrophages (J774 cells and PEMs). In macrophages pretreated with a CpG motif-containing oligodeoxynucleotide (CpG-ODN) the relative contribution of SRs to yeast uptake increased and that of β\beta-glucan receptors decreased. Whereas the class A SR MARCO participated in the uptake of both zymosan and C. albicans by CpG-ODN-pretreated, but not untreated macrophages, the related receptor SR-A/CD204 was involved in the uptake of zymosan, but not of C. albicans. The reduction of zymosan-stimulated H2O2H_2O_2 production observed in DS-pretreated J774 cells and in class A SRs-deficient PEMs suggest that class A SRs mediate part of this process. Conclusions: Our results revealed that SRs belong to a redundant system of receptors for yeasts. Binding of yeasts to different receptors in resting versus CpG-ODN-pre-exposed macrophages may differentially affect polarization of adaptive immune responses

    Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Jatropha curcas L. </it>has attracted a great deal of attention worldwide, regarding its potential as a new biodiesel crop. However, the understanding of this crop remains very limited and little genomic research has been done. We used simple sequence repeat (SSR) markers that could be transferred from <it>Manihot esculenta </it>(cassava) to analyze the genetic relationships among 45 accessions of <it>J. curcas </it>from our germplasm collection.</p> <p>Results</p> <p>In total, 187 out of 419 expressed sequence tag (EST)-SSR and 54 out of 182 genomic (G)-SSR markers from cassava were polymorphic among the <it>J. curcas </it>accessions. The EST-SSR markers comprised 26.20% dinucleotide repeats, 57.75% trinucleotide repeats, 7.49% tetranucleotide repeats, and 8.56% pentanucleotide repeats, whereas the majority of the G-SSR markers were dinucleotide repeats (62.96%). The 187 EST-SSRs resided in genes that are involved mainly in biological and metabolic processes. Thirty-six EST-SSRs and 20 G-SSRs were chosen to analyze the genetic diversity among 45 <it>J. curcas </it>accessions. A total of 183 polymorphic alleles were detected. On the basis of the distribution of these polymorphic alleles, the 45 accessions were classified into six groups, in which the genotype showed a correlation with geographic origin. The estimated mean genetic diversity index was 0.5572, which suggests that our <it>J. curcas </it>germplasm collection has a high level of genetic diversity. This should facilitate subsequent studies on genetic mapping and molecular breeding.</p> <p>Conclusion</p> <p>We identified 241 novel EST-SSR and G-SSR markers in <it>J. curcas</it>, which should be useful for genetic mapping and quantitative trait loci analysis of important agronomic traits. By using these markers, we found that the intergroup gene diversity of <it>J. curcas </it>was greater than the intragroup diversity, and that the domestication of the species probably occurred partly in America and partly in Hainan, China.</p

    Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    Get PDF
    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency

    Amygdala Engagement in Response to Subthreshold Presentations of Anxious Face Stimuli in Adults with Autism Spectrum Disorders: Preliminary Insights

    Get PDF
    Current theoretical models of autism spectrum disorders (ASD) have proposed that impairments in the processing of social/emotional information may be linked to amygdala dysfunction. However, the extent to which amygdala functions are compromised in ASD has become a topic of debate in recent years. In a jittered functional magnetic resonance imaging study, sub-threshold presentations of anxious faces permitted an examination of amygdala recruitment in 12 high functioning adult males with ASD and 12 matched controls. We found heightened neural activation of the amygdala in both high functioning adults with ASD and matched controls. Neither the intensity nor the time-course of amygdala activation differed between the groups. However, the adults with ASD showed significantly lower levels of fusiform activation during the trials compared to controls. Our findings suggest that in ASD, the transmission of socially salient information along sub-cortical pathways is intact: and yet the signaling of this information to structures downstream may be impoverished, and the pathways that facilitate subsequent processing deficient

    Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary

    Get PDF
    There has been considerable investigation of the potential for soyfoods to reduce risk of cancer, and in particular cancer of the breast. Most interest in this relationship is because soyfoods are essentially a unique dietary source of isoflavones, compounds which bind to estrogen receptors and exhibit weak estrogen-like effects under certain experimental conditions. In recent years the relationship between soyfoods and breast cancer has become controversial because of concerns – based mostly on in vitro and rodent data – that isoflavones may stimulate the growth of existing estrogen-sensitive breast tumors. This controversy carries considerable public health significance because of the increasing popularity of soyfoods and the commercial availability of isoflavone supplements. In this analysis and commentary we attempt to outline current concerns regarding the estrogen-like effects of isoflavones in the breast focusing primarily on the clinical trial data and place these concerns in the context of recent evidence regarding estrogen therapy use in postmenopausal women. Overall, there is little clinical evidence to suggest that isoflavones will increase breast cancer risk in healthy women or worsen the prognosis of breast cancer patients. Although relatively limited research has been conducted, and the clinical trials often involved small numbers of subjects, there is no evidence that isoflavone intake increases breast tissue density in pre- or postmenopausal women or increases breast cell proliferation in postmenopausal women with or without a history of breast cancer. The epidemiologic data are generally consistent with the clinical data, showing no indication of increased risk. Furthermore, these clinical and epidemiologic data are consistent with what appears to be a low overall breast cancer risk associated with pharmacologic unopposed estrogen exposure in postmenopausal women. While more research is required to definitively allay concerns, the existing data should provide some degree of assurance that isoflavone exposure at levels consistent with historical Asian soyfood intake does not result in adverse stimulatory effects on breast tissue

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes
    corecore