1,679 research outputs found

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface M⊂ZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    Generic metrics and the mass endomorphism on spin three-manifolds

    Full text link
    Let (M,g)(M,g) be a closed Riemannian spin manifold. The constant term in the expansion of the Green function for the Dirac operator at a fixed point p∈Mp\in M is called the mass endomorphism in pp associated to the metric gg due to an analogy to the mass in the Yamabe problem. We show that the mass endomorphism of a generic metric on a three-dimensional spin manifold is nonzero. This implies a strict inequality which can be used to avoid bubbling-off phenomena in conformal spin geometry.Comment: 8 page

    On a spin conformal invariant on manifolds with boundary

    Get PDF
    On a n-dimensional connected compact manifold with non-empty boundary equipped with a Riemannian metric, a spin structure and a chirality operator, we study some properties of a spin conformal invariant defined from the first eigenvalue of the Dirac operator under the chiral bag boundary condition. More precisely, we show that we can derive a spinorial analogue of Aubin's inequality.Comment: 26 page

    Surgery and the spinorial tau-invariant

    Get PDF
    We associate to a compact spin manifold M a real-valued invariant \tau(M) by taking the supremum over all conformal classes over the infimum inside each conformal class of the first positive Dirac eigenvalue, normalized to volume 1. This invariant is a spinorial analogue of Schoen's σ\sigma-constant, also known as the smooth Yamabe number. We prove that if N is obtained from M by surgery of codimension at least 2, then τ(N)≄min⁥{τ(M),Λn}\tau(N) \geq \min\{\tau(M),\Lambda_n\} with Λn>0\Lambda_n>0. Various topological conclusions can be drawn, in particular that \tau is a spin-bordism invariant below Λn\Lambda_n. Below Λn\Lambda_n, the values of τ\tau cannot accumulate from above when varied over all manifolds of a fixed dimension.Comment: to appear in CPD

    Regularity for eigenfunctions of Schr\"odinger operators

    Full text link
    We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy

    The Dirac operator on generalized Taub-NUT spaces

    Full text link
    We find sufficient conditions for the absence of harmonic L2L^2 spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page

    The Ammann-Beenker tilings revisited

    Full text link
    This paper introduces two tiles whose tilings form a one-parameter family of tilings which can all be seen as digitization of two-dimensional planes in the four-dimensional Euclidean space. This family contains the Ammann-Beenker tilings as the solution of a simple optimization problem.Comment: 7 pages, 4 figure

    Dirac-harmonic maps from index theory

    Get PDF
    We prove existence results for Dirac-harmonic maps using index theoretical tools. They are mainly interesting if the source manifold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the sense that the underlying map between the source and target manifolds is a harmonic map.Comment: 26 pages, no figur

    Em2-ELISA for the follow-up of alveolar echinococcosis after complete surgical resection of liver lesions

    Get PDF
    Alveolar echinococcosis, a serious and often fatal human disease, can be efficiently cured only by complete surgical resection of the Echinococcus multilocularis lesion. The present study showed that the determination in patients who had undergone surgery of antibody activity directed against the antigen Em2 reliably reflected complete or incomplete surgical resection. From 9 patients with pre-operative positive results in the Em2 enzyme-linked immunosorbent assay (Em2-ELISA) and successful surgical resection, 6 converted to negative within one year and the remaining 3 patients within 4 years after surgery. Six of 7 additional patients who showed recurrences in an average of 6 years after surgery despite assumed complete surgical resection, were positive by Em2-ELISA at the time of recurrence. Discrimination was not possible between these 2 groups of patients when using an ELISA employing crude antigen obtained from E. granulosus hydatid cyst flui

    A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori

    Get PDF
    We present an experimental and numerical study of the effects of decoherence on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM) tori in its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and densities which necessitate a quantum description. This real quantum system is coupled to the environment via spontaneous emission. The degree of coupling is varied and the effects of this coupling on the quantum coherence of the system are studied. When the classical diffusion through a partially broken torus is < hbar, diffusion of quantum particles is inhibited. We find that increasing decoherence via spontaneous emission increases the transport of quantum particles through the boundary.Comment: 19 pages including 6 figure
    • 

    corecore