4,181 research outputs found
Halting Neotropical Deforestation: Do the Forest Principles Have What It Takes?
INTRODUCTION I crashed into the thick secondary growth, stopping suddenly to duck a certain branch in my path: a fat black bullet ant crawled along it with indifference, an attitude that would have quickly changed had I brushed up against him. I headed toward the large patch of Heliconia just to the right. We had earlier mapped out the clump, and finding it to contain seventeen flower clusters, it was one of the prize patches in the study plot. I took my spot ten paces from the outer clusters, started my stop watch, and waited with field book in hand. The Birds of Paradise were dripping nectar from their red fingertips. With such a gold mine, I did not have to wait long for a hummingbird. Like an Evinrude-powered flat bottom whizzing up a winding lagoon, the bird\u27s sound reached me before I saw him. He appeared from the back of the patch, taking a drink here, then there, then here again, then at some other spot, then there again and back to here. He did not sit and sip for long at each spot, but he did pause long enough for me to see him gleam green and deep violet. He was a red-footed plumeleteer, emerald green on the head, changing to dark purple through his body and on to his tail. His feet and straight bill were distinctively red. Without a doubt he owned this lucrative Heliconia patch. But then from my right came another whir. A ..
Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers
Achieving individual qubit readout is a major challenge in the development of
scalable superconducting quantum processors. We have implemented the
multiplexed readout of a four transmon qubit circuit using non-linear
resonators operated as Josephson bifurcation amplifiers. We demonstrate the
simultaneous measurement of Rabi oscillations of the four transmons. We find
that multiplexed Josephson bifurcation is a high-fidelity readout method, the
scalability of which is not limited by the need of a large bandwidth nearly
quantum-limited amplifier as is the case with linear readout resonators.Comment: 7 pages, 6 figures, and 31 reference
Fission decay of N = Z nuclei at high angular momentum: Zn
Using a unique two-arm detector system for heavy ions (the BRS, binary
reaction spectrometer) coincident fission events have been measured from the
decay of Zn compound nuclei formed at 88MeV excitation energy in the
reactions with Ar beams on a Mg target at Ar) =
195 MeV. The detectors consisted of two large area position sensitive (x,y) gas
telescopes with Bragg-ionization chambers. From the binary coincidences in the
two detectors inclusive and exclusive cross sections for fission channels with
differing losses of charge were obtained. Narrow out-of-plane correlations
corresponding to coplanar decay are observed for two fragments emitted in
binary events, and in the data for ternary decay with missing charges from 4 up
to 8. After subtraction of broad components these narrow correlations are
interpreted as a ternary fission process at high angular momentum through an
elongated shape. The lighter mass in the neck region consists dominantly of two
or three-particles. Differential cross sections for the different mass splits
for binary and ternary fission are presented. The relative yields of the binary
and ternary events are explained using the statistical model based on the
extended Hauser-Feshbach formalism for compound nucleus decay. The ternary
fission process can be described by the decay of hyper-deformed states with
angular momentum around 45-52 .Comment: 23 pages, 25 figure
Classification of lower extremity movement patterns based on visual assessment: reliability and correlation with 2-dimensional video analysis
CONTEXT: Abnormal movement patterns have been implicated in lower extremity injury. Reliable, valid, and easily implemented assessment methods are needed to examine existing musculoskeletal disorders and investigate predictive factors for lower extremity injury. OBJECTIVE: To determine the reliability of experienced and novice testers in making visual assessments of lower extremity movement patterns and to characterize the construct validity of the visual assessments. DESIGN: Cross-sectional study. SETTING: University athletic department and research laboratory. PATIENTS OR OTHER PARTICIPANTS: Convenience sample of 30 undergraduate and graduate students who regularly participate in athletics (age = 19.3 ± 4.5 years). Testers were 2 experienced physical therapists and 1 novice postdoctoral fellow (nonclinician). MAIN OUTCOME MEASURE(S): We took videos of 30 athletes performing the single-legged squat. Three testers observed the videos on 2 occasions and classified the lower extremity movement as dynamic valgus, no change, or dynamic varus. The classification was based on the estimated change in frontal-plane projection angle (FPPA) of the knee from single-legged stance to maximum single-legged squat depth. The actual FPPA change was measured quantitatively. We used percentage agreement and weighted κ to examine tester reliability and to determine construct validity of the visual assessment. RESULTS: The κ values for intratester and intertester reliability ranged from 0.75 to 0.90, indicating substantial to excellent reliability. Percentage agreement between the visual assessment and the quantitative FPPA change category was 90%, with a κ value of 0.85. CONCLUSIONS: Visual assessments were made reliably by experienced and novice testers. Additionally, movement-pattern categories based on visual assessments were in excellent agreement with objective methods to measure FPPA change. Therefore, visual assessments can be used in the clinic to assess movement patterns associated with musculoskeletal disorders and in large epidemiologic studies to assess the association between lower extremity movement patterns and musculoskeletal injury
High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates
Many important hominid-bearing fossil localities in East Africa are in regions that are extremely hot and dry. Although humans are well adapted to such conditions, it has been inferred that East African environments were cooler or more wooded during the Pliocene and Pleistocene when this region was a central stage of human evolution. Here we show that the Turkana Basin, Kenya—today one of the hottest places on Earth—has been continually hot during the past 4 million years. The distribution of ^(13)C-^(18)O bonds in paleosol carbonates indicates that soil temperatures during periods of carbonate formation were typically above 30 °C and often in excess of 35 °C. Similar soil temperatures are observed today in the Turkana Basin and reflect high air temperatures combined with solar heating of the soil surface. These results are specific to periods of soil carbonate formation, and we suggest that such periods composed a large fraction of integrated time in the Turkana Basin. If correct, this interpretation has implications for human thermophysiology and implies a long-standing human association with marginal environments
Monoclonal gammopathy of undetermined significance, multiple myeloma, and osteoporosis
The finding of monoclonal gammopathy of undetermined significance (MGUS) is not infrequent during an evaluation for osteoporosis or a fracture. In most cases, the diagnosis is MGUS, whose prevalence increases with age. Although the impact of MGUS on bone mineral density, bone remodeling, and the fracture risk remains unclear, this asymptomatic hematological disorder may constitute a risk factor for osteoporosis. Furthermore, each year, 1% of patients with MGUS progress to multiple myeloma, a disease whose pathophysiology and association with bone loss and pathological fractures are increasingly well understood. Osteoporotic fractures, although probably common in myeloma patients, are less likely to be recognized. Here, we discuss the pathophysiology of myeloma and MGUS and their impact in terms of bone mineral density, osteoporotic fractures, and bone turnover markers
- …
