634 research outputs found
Consistency, Population Solidarity, and Egalitarian Solutions for TU-Games
A (point-valued) solution for cooperative games with transferable utility, or simply TU-games, assigns a payoff vector to every TU-game. In this paper we discuss two classes of equal surplus sharing solutions, one consisting of all convex combinations of the equal division solution and the CIS-value, and its dual class consisting of all convex combinations of the equal division solution and the ENSC-value. We provide several characterizations using either population solidarity or a reduced game consistency in addition to other standard properties
Open Problems in Particle Condensation
particle condensation is a novel state in nuclear systems. We
briefly review the present status on the study of particle
condensation and address the open problems in this research field:
particle condensation in heavier systems other than the Hoyle state, linear
chain and particle rings, Hoyle-analogue states with extra neutrons,
particle condensation related to astrophysics, etc.Comment: 12 pages. To be published in J. of Phys. G special issue on Open
Problems in Nuclear Structure (OPeNST
Fluctuations for the Ginzburg-Landau Interface Model on a Bounded Domain
We study the massless field on , where is a bounded domain with smooth boundary, with Hamiltonian
\CH(h) = \sum_{x \sim y} \CV(h(x) - h(y)). The interaction \CV is assumed
to be symmetric and uniformly convex. This is a general model for a
-dimensional effective interface where represents the height. We
take our boundary conditions to be a continuous perturbation of a macroscopic
tilt: for , , and
continuous. We prove that the fluctuations of linear
functionals of about the tilt converge in the limit to a Gaussian free
field on , the standard Gaussian with respect to the weighted Dirichlet
inner product for some explicit . In a subsequent article,
we will employ the tools developed here to resolve a conjecture of Sheffield
that the zero contour lines of are asymptotically described by , a
conformally invariant random curve.Comment: 58 page
Nuclear Alpha-Particle Condensates
The -particle condensate in nuclei is a novel state described by a
product state of 's, all with their c.o.m. in the lowest 0S orbit. We
demonstrate that a typical -particle condensate is the Hoyle state
( MeV, state in C), which plays a crucial role for
the synthesis of C in the universe. The influence of antisymmentrization
in the Hoyle state on the bosonic character of the particle is
discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle
state, therefore, are predominant. It is conjectured that -particle
condensate states also exist in heavier nuclei, like O,
Ne, etc. For instance the state of O at MeV
is identified from a theoretical analysis as being a strong candidate of a
condensate. The calculated small width (34 keV) of ,
consistent with data, lends credit to the existence of heavier Hoyle-analogue
states. In non-self-conjugated nuclei such as B and C, we discuss
candidates for the product states of clusters, composed of 's,
triton's, and neutrons etc. The relationship of -particle condensation
in finite nuclei to quartetting in symmetric nuclear matter is investigated
with the help of an in-medium modified four-nucleon equation. A nonlinear order
parameter equation for quartet condensation is derived and solved for
particle condensation in infinite nuclear matter. The strong qualitative
difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in
Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck,
(Springer-Verlag, Berlin, 2011
The Enskog Process
The existence of a weak solution to a McKean-Vlasov type stochastic
differential system corresponding to the Enskog equation of the kinetic theory
of gases is established under natural conditions. The distribution of any
solution to the system at each fixed time is shown to be unique. The existence
of a probability density for the time-marginals of the velocity is verified in
the case where the initial condition is Gaussian, and is shown to be the
density of an invariant measure.Comment: 38 page
On the Fibonacci universality classes in nonlinear fluctuating hydrodynamics
We present a lattice gas model that without fine tuning of parameters is
expected to exhibit the so far elusive modified Kardar-Parisi-Zhang (KPZ)
universality class. To this end, we review briefly how non-linear fluctuating
hydrodynamics in one dimension predicts that all dynamical universality classes
in its range of applicability belong to an infinite discrete family which we
call Fibonacci family since their dynamical exponents are the Kepler ratios
of neighbouring Fibonacci numbers , including
diffusion (), KPZ (), and the limiting ratio which is the
golden mean . Then we revisit the case of two
conservation laws to which the modified KPZ model belongs. We also derive
criteria on the macroscopic currents to lead to other non-KPZ universality
classes.Comment: 17 page
Optimal designs for rational function regression
We consider optimal non-sequential designs for a large class of (linear and
nonlinear) regression models involving polynomials and rational functions with
heteroscedastic noise also given by a polynomial or rational weight function.
The proposed method treats D-, E-, A-, and -optimal designs in a
unified manner, and generates a polynomial whose zeros are the support points
of the optimal approximate design, generalizing a number of previously known
results of the same flavor. The method is based on a mathematical optimization
model that can incorporate various criteria of optimality and can be solved
efficiently by well established numerical optimization methods. In contrast to
previous optimization-based methods proposed for similar design problems, it
also has theoretical guarantee of its algorithmic efficiency; in fact, the
running times of all numerical examples considered in the paper are negligible.
The stability of the method is demonstrated in an example involving high degree
polynomials. After discussing linear models, applications for finding locally
optimal designs for nonlinear regression models involving rational functions
are presented, then extensions to robust regression designs, and trigonometric
regression are shown. As a corollary, an upper bound on the size of the support
set of the minimally-supported optimal designs is also found. The method is of
considerable practical importance, with the potential for instance to impact
design software development. Further study of the optimality conditions of the
main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory
and additional example
Mathematical description of bacterial traveling pulses
The Keller-Segel system has been widely proposed as a model for bacterial
waves driven by chemotactic processes. Current experiments on {\em E. coli}
have shown precise structure of traveling pulses. We present here an
alternative mathematical description of traveling pulses at a macroscopic
scale. This modeling task is complemented with numerical simulations in
accordance with the experimental observations. Our model is derived from an
accurate kinetic description of the mesoscopic run-and-tumble process performed
by bacteria. This model can account for recent experimental observations with
{\em E. coli}. Qualitative agreements include the asymmetry of the pulse and
transition in the collective behaviour (clustered motion versus dispersion). In
addition we can capture quantitatively the main characteristics of the pulse
such as the speed and the relative size of tails. This work opens several
experimental and theoretical perspectives. Coefficients at the macroscopic
level are derived from considerations at the cellular scale. For instance the
stiffness of the signal integration process turns out to have a strong effect
on collective motion. Furthermore the bottom-up scaling allows to perform
preliminary mathematical analysis and write efficient numerical schemes. This
model is intended as a predictive tool for the investigation of bacterial
collective motion
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
- …
