487 research outputs found

    Randomized adaptive quantum state preparation

    Full text link
    We develop an adaptive method for quantum state preparation that utilizes randomness as an essential component and that does not require classical optimization. Instead, a cost function is minimized to prepare a desired quantum state through an adaptively constructed quantum circuit, where each adaptive step is informed by feedback from gradient measurements in which the associated tangent space directions are randomized. We provide theoretical arguments and numerical evidence that convergence to the target state can be achieved for almost all initial states. We investigate different randomization procedures and develop lower bounds on the expected cost function change, which allows for drawing connections to barren plateaus and for assessing the applicability of the algorithm to large-scale problems

    Quantum tracking control of the orientation of symmetric top molecules

    Full text link
    The goal of quantum tracking control is to identify shaped fields to steer observable expectation values along designated time-dependent tracks. The fields are determined via an iteration-free procedure, which is based on inverting the underlying dynamical equations governing the controlled observables. In this article, we generalize the ideas in Phys. Rev. A 98, 043429 (2018) to the task of orienting symmetric top molecules in 3D. To this end, we derive equations for the control fields capable of directly tracking the expected value of the 3D dipole orientation vector along a desired path in time. We show this framework can be utilized for tracking the orientation of linear molecules as well, and present numerical illustrations of these principles for symmetric top tracking control problems

    UV-induced syntheses of surfactant-free precious metal nanoparticles in alkaline methanol and ethanol

    Get PDF
    Surfactant-free UV-induced syntheses of Pt and Ir nanoparticles in alkaline methanol and ethanol are presented. Small size nanoparticles ca. 2 nm in diameter are obtained without surfactants in a wide range of base concentration

    Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics

    Get PDF
    Macrolides and ketolides comprise a family of clinically important antibiotics that inhibit protein synthesis by binding within the exit tunnel of the bacterial ribosome. While these antibiotics are known to interrupt translation at specific sequence motifs, with ketolides predominantly stalling at Arg/Lys-X-Arg/Lys motifs and macrolides displaying a broader specificity, a structural basis for their context-specific action has been lacking. Here, we present structures of ribosomes arrested during the synthesis of an Arg-Leu-Arg sequence by the macrolide erythromycin (ERY) and the ketolide telithromycin (TEL). Together with deep mutagenesis and molecular dynamics simulations, the structures reveal how ERY and TEL interplay with the Arg-Leu-Arg motif to induce translational arrest and illuminate the basis for the less stringent sequence-specific action of ERY over TEL. Because programmed stalling at the Arg/Lys-X-Arg/Lys motifs is used to activate expression of antibiotic resistance genes, our study also provides important insights for future development of improved macrolide antibiotics

    Frozen and Invariant Quantum Discord under Local Dephasing Noise

    Full text link
    In this chapter, we intend to explore and review some remarkable dynamical properties of quantum discord under various different open quantum system models. Specifically, our discussion will include several concepts connected to the phenomena of time invariant and frozen quantum discord. Furthermore, we will elaborate on the relation of these two phenomena to the non-Markovian features of the open system dynamics and to the usage of dynamical decoupling protocols.Comment: 29 pages, 8 figure

    Elastic properties of B-C-N films grown by N2-reactive sputtering from boron carbide targets

    Full text link
    The following article appeared in Journal of Applied Physics 114.21 (2013): 213508 and may be found at http://scitation.aip.org/content/aip/journal/jap/114/21/10.1063/1.4837655Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B4C target and N2 as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.This work has been supported by Spanish MINECO under contracts MAT2009-08786 and MAT2012-37276- C03-01 as well as by the Madrid Regional Government though contract S2009/MAT-1756
    • …
    corecore