52 research outputs found

    Effects of treated wastewater irrigation on soil salinity and sodicity in Sfax (Tunisia): A case study

    Get PDF
    In arid regions such as near Sfax (Tunisia), treated wastewater effluents (TWE) are often applied as agricultural irrigation. Irrigation TWE usually contain large amounts of carbon, nitrogen and sodium. The objective of this study was to evaluate the impact of TWE irrigation on soil salinity and sodicity. In the city of Sfax, two sites were selected with two soil types (fluvisol and calcisol) having been irrigated for 4 and 15 years respectively. Soils were sampled at three different depths (0-30, 30-60 and 60-90 cm) in the TWE irrigated area and in a non-irrigated control area. Irrigated and non-irrigated study soils were analyzed for pH, nitrate and ammonia, electrical conductivity (ECs), exchangeable sodium percentage (ESP), sodium absorption ratio (SAR) and soil organic matter.The fluvisol, irrigated for only four years, is more affected by salinity than the calcisol irrigated for 15 years. In the upper fluvisol layer irrigated by the treated wastewater, ECs reach 8 mS•cm-1 and ESP a value of 15% while in all layers of the calcisol, ECs and ESP are lower and rarely exceed 4 mS•cm-1 and 6% respectively. This result is due to a combination of factors in the fluvisol treatment area including texture, cation exchange capacity, irrigation procedure and crop management.Dans les régions arides telles que le cas de Sfax (Tunisie), les eaux usées traitées (EUT) sont souvent utilisées en irrigation agricole. Généralement, les EUT sont riches en composés organiques, en azote et en sodium. L’objectif de cette étude est d’évaluer l’impact de l’irrigation par les EUT sur la salinité et la sodicité des sols. Dans la région de Sfax, deux sites ont été sélectionnés, représentant deux types de sols différents (fluvisol et calcisol) irrigués par les EUT, respectivement depuis 4 et 15 ans. Des échantillons des sols ont été prélevés systématiquement à trois profondeurs différentes (0-30, 30-60 et 60-90 cm) au niveau des parcelles irriguées et sur des placettes contrôle non irriguées (témoin). Sur chaque échantillon composite de sol, les pH (eau, KCl), teneurs en nitrate et ammonium, capacité d’échange cationique (CEC), conductivités électriques (CEs), taux de sodium échangeable (ESP), ratios d’absorption de sodium et teneurs en matières organiques ont été mesurés.Le fluvisol, irrigué depuis seulement quatre ans, est plus affecté par la salinité que le calcisol, irrigué depuis 15 ans. Dans les niveaux de surface du fluvisol, la CEs et l’ESP ont atteint les seuils critiques de 8 mS•cm-1 et 15 % respectivement, alors qu’au niveau du calcisol, la CEs et l’ESP sont plus faibles et dépassent rarement 4 mS•cm-1 et 5 % respectivement. Pour le fluvisol, ce résultat est dû à la combinaison de plusieurs facteurs impliquant la texture, la capacité d’échange cationique, la procédure d’irrigation et la rotation des cultures

    Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project.

    Get PDF
    Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density.

    Get PDF
    The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease

    Human and mouse essentiality screens as a resource for disease gene discovery

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery. Discovery of causal variants for monogenic disorders has been facilitated by whole exome and genome sequencing, but does not provide a diagnosis for all patients. Here, the authors propose a Full Spectrum of Intolerance to Loss-of-Function (FUSIL) categorization that integrates gene essentiality information to aid disease gene discovery

    Evaluation of the heavy metals (mercury, lead, and cadmium) contamination of sardine (Sardina pilchardus) and swordfish (Xiphias gladius) fished in three Algerian coasts

    Get PDF
    Aim: This study aimed to evaluate mercury (Hg), cadmium (Cd), and lead (Pb) levels in 70 samples of sardine (Sardina pilchardus) and 30 samples of swordfish (Xiphias gladius) fished in the Algerian coasts. Materials and Methods: After the mineralization of the fish samples through the pressure digestion, the analyses were carried out by inductively coupled plasma atomic emission spectroscopy. Results: Mean concentrations of Hg, Cd, and Pb in sardine were 0.62, 0.55, and 2.13 mg/kg wet weight, respectively, while in swordfish, the concentrations were 0.56, 0.57, and 3.9 mg/kg wet weight, respectively. These results exceeded the Algerian and European legislation threshold values, whereas Hg's concentration in swordfish remained close to and did not exceed the recommended thresholds (0.56 mg/kg wet weight). Conclusion: This fish may represent a hazard for consumers in Algeria. Systematic and periodic controls of heavy metals in fish are recommended, and risk assessment is needed to protect the consumer

    Genotypes of the epstein-barr virus in patients with various forms of infection

    No full text

    Supplementing Dairy Ewes Grazing Low Quality Pastures with Plant-Derived and Rumen-Protected Oils Containing Eicosapentaenoic Acid and Docosahexaenoic Acid Pellets Increases Body Condition Score and Milk, Fat, and Protein Yields

    Get PDF
    The Australian dairy sheep industry is small and mostly based on a natural grass grazing system, which can limit productivity. The current study tested different plant oil-infused and rumen protected polyunsaturated fats and their interactions with sire breeds to improve lactation traits and body condition scores (BCS) of ewes grazing low quality pastures. It was hypothesised that supplementing lactating ewe’s diets with plant-derived polyunsaturated oils would improve milk production and composition without compromising BCS. Sixty ewes (n = 10/treatment) in mid-lactation, balanced by sire breed, parity, milk yield, body condition score, and liveweight, were supplemented with: (1) control: wheat-based pellets without oil inclusion; wheat-based pellets including; (2) canola oil (CO); (3) rice bran oil (RBO); (4) flaxseed oil (FSO); (5); safflower oil (SFO); and (6) rumen protected marine oil containing eicosapentaenoic acid and docosahexaenoic acid (RPO). Except for the control group, all supplementary diets included the same level of 50 mL/kg DM of oil and all diets were isocaloric and isonitrogenous. Experimental animals were grazed in the same paddock with ad libitum access to pasture, hay, and water during the 10-week study. RPO was the most effective diet that enhanced milk, fat, and protein yields by approximately 30%, 13%, and 31%, respectively (p < 0.0001). A significant increase in milk production was also observed with CO, RBO, and SFO treatments (p < 0.0001). Breed significantly influenced animal performance with higher milk yields recorded for crossbred Awassi × East Friesian (AW × EF) (578 g/day) vs. purebred Awassi (452 g/day) (p < 0.0001). This study provides empirical evidence for the use of rumen-protected and plant-derived oil-infused pellets as supplements under low quality pasture grazing conditions to improve the production performance of purebred Awassi and crossbred AW × EF ewes
    corecore