176 research outputs found

    Contribution of Ambient Ozone to Changes in Scots Pine Defoliation. Step II of Lithuanian Studies

    Get PDF
    This study aimed to explore if changes in peak ozone (O3) concentrations may reinforce the phytotoxic effects of air concentration of acidifying compounds and their deposition, as well as unfavorable climatic factors on pine crown defoliation. Forty-eight pine stands with more than 8000 sample pine trees have been monitored annually. The impact of sulfur dioxide (SO2) on pine defoliation was found to be the most significant. The impacts of peak O3 concentrations, acid deposition, and amount of precipitation were considerably lower, whereas the impact of air temperature, the least. Contribution of peak O3 concentrations to the integrated impact of acid deposition and amount of precipitation on pine defoliation was most significant, whereas the contribution to the impact of acidifying air compounds, mainly SO2, was the least. No synergetic effect between peak O3 concentrations and high temperature during vegetation period was detected

    Sensitivity of Beech Trees to Global Environmental Changes at Most North-Eastern Latitude of Their Occurrence in Europe

    Get PDF
    The present study aimed to detect sensitivity of beech trees (Fagus sylvatica L.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree growth reduction. These meteorological parameters explained 57% variation in beech tree ring widths. Acidifying species had no significant effect on beech tree growth. Only ozone was among key factors contributing to beech stand productivity. Phytotoxic effect of this pollutant increased explanation rate of beech tree ring variation by 18%, that is, up to 75%. However, due to climate changes the warmer dormant periods alone are not the basis ensuring favourable conditions for beech tree growth. Increase in air temperature in June-August and decrease in precipitation amount in the first half of vegetation period should result in beech tree radial increment reduction. Despite the fact that phytotoxic effect of surface ozone should not increase due to stabilization in its concentration, it is rather problematic to expect better environmental conditions for beech tree growth at northern latitude of their pervasion

    Trend in Ambient Ozone and an Attempt to Detect Its Effect on Biota in Forest Ecosystem. Step I of Lithuanian Studies

    Get PDF
    The presented study aimed to explore the relationships between ambient ozone (O3) and tree defoliation, specific diversity, and abundance of soil microarthropods, stream macroinvertebrates, and small mammals (mainly rodents) in order to test the hypothesis that changes in the considered objects of the forest ecosystem could be related to changes in ambient O3, concentration of which is below critical level. The observations were carried out from 1994 at three integrated monitoring stations. The obtained data revealed that only peak O3 concentrations (from 125–215 μg·m-3) had significant effect on changes in the considered components of forest biota

    Adaptation of forest ecosystems to air pollution and climate change : a global assessment on research priorities.

    Get PDF
    Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings. Monitoring, modelling, assessment of multiple stressors, ecophysiology, and nutrient cycles have been thoroughly studied aspects of climate change and air pollution research for a long time under the umbrella of IUFRO RG 7.01. Recently, social and economic issues together with water relations are gaining more attention in parallel with science requirements on adaptation. In this paper, we summarise the main research needs emphasized at the recent 24th IUFRO RG 7.01 Conference titled ?Adaptation of Forest Ecosystems to Air Pollution and Climate Change?. One important conclusion of the conference was the need for information on nutritional status of forest stands for sustainable forest management. It has been suggested to maintain long-term monitoring programs and to account for the effects of extreme years, and past and present management practices. Long-term monitoring can also help to understand the effects of forestry treatments on the nutrient and water budgets of the ecosystems which may enable to improve management practices like water saving silviculture

    Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions

    Get PDF
    The international Long-Term Ecological Research Network (ILTER) encompasses hundreds of long-term research/monitoring sites located in a wide array of ecosystems that can help us understand environmental change across the globe. We evaluated long-term trends (1990–2015) for bulk deposition, throughfall and runoff water chemistry and fluxes, and climatic variables in 25 forested catchments in Europe belonging to the UNECE International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). Many of the IM sites form part of the monitoring infrastructures of this larger ILTER network. Trends were evaluated for monthly concentrations of non-marine (anthropogenic fraction, denoted as x) sulphate (xSO4) and base cations x(Ca + Mg), hydrogen ion (H+), inorganic N (NO3 and NH4) and ANC (Acid Neutralising Capacity) and their respective fluxes into and out of the catchments and for monthly precipitation, runoff and air temperature. A significant decrease of xSO4 deposition resulted in decreases in concentrations and fluxes of xSO4 in runoff, being significant at 90% and 60% of the sites, respectively. Bulk deposition of NO3 and NH4 decreased significantly at 60–80% (concentrations) and 40–60% (fluxes) of the sites. Concentrations and fluxes of NO3 in runoff decreased at 73% and 63% of the sites, respectively, and NO3 concentrations decreased significantly at 50% of the sites. Thus, the LTER/ICP IM network confirms the positive effects of the emission reductions in Europe. Air temperature increased significantly at 61% of the sites, while trends for precipitation and runoff were rarely significant. The site-specific variation of xSO4 concentrations in runoff was most strongly explained by deposition. Climatic variables and deposition explained the variation of inorganic N concentrations in runoff at single sites poorly, and as yet there are no clear signs of a consistent deposition-driven or climate-driven increase in inorganic N exports in the catchments.Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditionsacceptedVersio
    corecore