782 research outputs found
The challenge of acute-stroke management: does telemedicine offer a solution?
<p><b>Background:</b> Several studies have described successful experiences with the use of telemedicine in acute stroke. The objective of this study was to assess the feasibility, acceptability, and treatment delivery reliability, of telemedicine systems for the clinical and radiological assessment, and management of acute-stroke patients.</p>
<p><b>Summary of Review:</b> A systematic review of the literature was carried out. Studies were included if they met the following criteria: (1) study population included participants with a diagnosis of suspected acute stroke, (2) intervention included the use of telemedicine systems to aid assessment, diagnosis, or treatment in acute stroke, and (3) outcomes measured related to feasibility in clinical practice, acceptability to patients, carers, and staff, reliability of telemedicine systems, and effectiveness in delivering treatment, especially tissue plasminogen activator (tPA). Overall, 17 relevant non-randomised studies reported that telemedicine systems were feasible and acceptable. Interrater reliability was excellent for global clinical assessments and decisions on radiological exclusion criteria although agreement for individual assessment items was more variable. Telemedicine systems were associated with increased use of tPA.</p>
<p><b>Conclusion:</b> Although there is limited reliable evidence, observational studies have indicated that telemedicine systems can be feasible, acceptable, and reliable in acute-stroke management. In addition, telemedicine consultations were associated with improved delivery of tPA.</p>
Simulation of surfactant transport during the rheological relaxation of two-dimensional dry foams
We describe a numerical model to predict the rheology of two-dimensional dry
foams. The model accurately describes soap film curvature, viscous friction
with the walls, and includes the transport of surfactant within the films and
across the vertices where films meet. It accommodates the changes in foam
topology that occur when a foam flows and, in particular, accurately represents
the relaxation of the foam following a topological change. The model is
validated against experimental data, allowing the prediction of elastic and
viscous parameters associated with different surfactant solutions
Transverse crack modelling and validation in rotor systems including thermal effects
In this paper a model is described that allows to simulate the static behaviour of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behaviour of the rotating cracked shaft. The crack âbreathsâ, i.e. the mechanism of opening and closing of the crack is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress are time depending with a period equal to the period of rotation, thus the crack âperiodically breathsâ. An original simplified model is described that allows cracks of different shape to be modelled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. At first the crack âbreathingâ mechanism, simulated with the model has been compared with the results obtained by a non-linear 3D FEM calculation and a good agreement in the results has been observed. Then, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above said 3D FEM. Also in this case, there is a good agreement in the results.
Therefore the proposed crack model and equivalent beam model can be inserted in the finite beam element model used for the rotor dynamical behavior simulation: the obtained equations have time depending coefficients, but they can be integrated in the frequency domain by using the harmonic balance method. The model is suitable for finite beam elements with 6 degrees of freedom per node, in order to account also for torsion vibrations and coupling between torsion and flexural vibrations
XUV Opacity of Aluminum between the Cold-Solid to Warm-Plasma Transition
We present calculations of the free-free XUV opacity of warm, solid-density
aluminum at photon energies between the plasma frequency at 15 eV and the
L-edge at 73 eV, using both density functional theory combined with molecular
dynamics and a semi-analytical model in the RPA framework with the inclusion of
local field corrections. As the temperature is increased from room temperature
to 10 eV, with the ion and electron temperatures equal, we calculate an
increase in the opacity in the range over which the degree of ionization is
constant. The effect is less pronounced if only the electron temperature is
allowed to increase. The physical significance of these increases is discussed
in terms of intense XUV-laser matter interactions on both femtosecond and
picosecond time-scales.Comment: 4 pages, 3 figure
Leaf Eh and pH: A Novel Indicator of Plant Stress. Spatial, Temporal and Genotypic Variability in Rice (Oryza sativa L.)
A wealth of knowledge has been published in the last decade on redox regulations in plants. However, these works remained largely at cellular and organelle levels. Simple indicators of oxidative stress at the plant level are still missing. We developed a method for direct measurement of leaf Eh and pH, which revealed spatial, temporal, and genotypic variations in rice. Eh (redox potential) and Eh@pH7 (redox potential corrected to pH 7) of the last fully expanded leaf decreased after sunrise. Leaf Eh was high in the youngest leaf and in the oldest leaves, and minimum for the last fully expanded leaf. Leaf pH decreased from youngest to oldest leaves. The same gradients in Eh-pH were measured for various varieties, hydric conditions, and cropping seasons. Rice varieties differed in Eh, pH, and/or Eh@pH7. Leaf Eh increases and leaf pH decreases with plant age. These patterns and dynamics in leaf Eh-pH are in accordance with the pattern and dynamics of disease infections. Leaf Eh-pH can bring new insight on redox processes at plant level and is proposed as a novel indicator of plant stress/health. It could be used by agronomists, breeders, and pathologists to accelerate the development of crop cultivation methods leading to agroecological crop protection
Coherent Wake Emission of High-Order Harmonics from Overdense Plasmas
International audienc
An individual-based model to explore the impact of psychological stress on immune infiltration into tumour spheroids
In recent in vitro experiments on co-culture between breast tumour spheroids
and activated immune cells, it was observed that the introduction of the stress
hormone cortisol resulted in a decreased immune cell infiltration into the
spheroids. Moreover, the presence of cortisol deregulated the normal levels of
the pro- and anti-inflammatory cytokines IFN-{\gamma} and IL-10. We present an
individual-based model to explore the interaction dynamics between tumour and
immune cells under psychological stress conditions. With our model, we explore
the processes underlying the emergence of different levels of immune
infiltration, with particular focus on the biological mechanisms regulated by
IFN-{\gamma} and IL-10. The set-up of numerical simulations is defined to mimic
the scenarios considered in the experimental study. Similarly to the
experimental quantitative analysis, we compute a score that quantifies the
level of immune cell infiltration into the tumour. The results of numerical
simulations indicate that the motility of immune cells, their capability to
infiltrate through tumour cells, their growth rate and the interplay between
these cell parameters can affect the level of immune cell infiltration in
different ways. Ultimately, numerical simulations of this model support a
deeper understanding of the impact of biological stress-induced mechanisms on
immune infiltration
Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments
International audienceFunctions of septin cytoskeletal polymers in tumorigenesis are still poorly defined. Their role in the regulation of cytokinesis and cell migration were proposed to contribute to cancer associated aneuploidy and metastasis. Overexpression of Septin 9 (Sept9) promotes migration of cancer cell lines. SEPT9 mRNA and protein expression is increased in breast tumors compared to normal and peritumoral tissues and amplification of SEPT9 gene was positively correlated with breast tumor progression. However, the existence of multiple isoforms of Sept9 is a confounding factor in the analysis of Sept9 functions. In the present study, we analyze the protein expression of Sept9_i2, an uncharacterized isoform, in breast cancer cell lines and tumors and describe its specific impact on cancer cell migration and Sept9 cytoskeletal distribution. Collectively, our results showed that, contrary to Sept9_i1, Sept9_ i2 did not support cancer cell migration, and induced a loss of subnuclear actin filaments. These effects were dependent on Sept9_i2 specific N-terminal sequence. Sept9_i2 was strongly down-regulated in breast tumors compared to normal mammary tissues. Thus our data indicate that Sept9_i2 is a negative regulator of breast tumorigenesis. We propose that Sept9 tumorigenic properties depend on the balance between Sept9_i1 and Sept9_i2 expression levels
Strengthening mechanisms in an Al-Fe-Cr-Ti nano-quasicrystalline alloy and composites
We report a study of the structure-processing-property relationships in a high strength AlFeCrTi nano-quasicrystalline alloy and composites containing 10 and 20Â vol% ductilising pure Al fibres. The superimposed contributions of several different strengthening mechanisms have been modelled analytically using data obtained from systematic characterisation of the monolithic alloy bar. An observed yield strength of 544Â MPa has been substantiated from a combination of solid solution strengthening, work hardening, precipitation hardening and Hall-Petch grain size dependent effects. These materials have been shown by other authors in previous published work to be highly sensitive to the size distribution of particles in the powder from which they are made, and the subsequent thermomechanical processing conditions. The processing condition employed in this study provided micron-sized grains with a strong [111] preferential orientation along the extrusion direction and a bimodal size distribution of the icosahedral nano-quasicrystalline precipitates. Both were deemed to be a significant contributor to the high yield strength observed. The addition of pure Al fibres was found to decrease the yield strength linearly with increasing Al content, and to augment the ductility of the composites.Industrial collaborator ALPOCO Ltd. (and more specifically Steve McArthur) provided the powders. Dr. Karen Kruska and Dr. Alan Xu assisted with sample preparation of FIB lift-out specimens of the atomised powder for TEM analysis. EPSRC Project EP/E040608/1 provided financial support. M. Galano thanks the RAEng for their support by means of a Research Fellowship. F. Audebert and M. Galano thank PICT-Oxford2010/2831. F. Audebert also thanks UBACyT20020130100663 and FONARSEC FS Nano 2010/11 for financial support.Peer Reviewe
- âŠ