67 research outputs found

    A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector

    Get PDF
    Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.Peer reviewe

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Mindfulness for educators

    No full text
    What is mindfulness? What benefits can mindfulness provide educators, both professionally and personally? Our panel will include colleagues with various experiences in mindfulness practice, both inside and outside of the classroom. Our discussion will explore the basic tenets of mindfulness practice, the research supporting its use, and the potential benefits that a more systematic inclusion of mindfulness practice at CSB/SJU might have for us and for our students

    2H Nuclear Magnetic Resonance Study of the Stereochemistry of Reduction of Some Organomercurials

    No full text
    The stereochemical courses of the replacement of mercury by deuterium in a range of organomercury halides or acetates, by employing as reducing systems sodium borodeuteride/tetrahydrofuran/aqueous base and 1-2% sodium amalgam/deuterium oxide/sodium deuterioxide, have been investigated by H nuclear magnetic resonance spectroscopy. The following organomercurials were examined: cis- and frans-(4-methylcyclohexyl)mercuric acetate (or bromide), cis-(3-methylcyclohexyl)mercuric bromide, cis- and trms-(2-methoxycyclohexyl)- and -(2-methoxycyclopentyl) mercuric chlorides, exo,endo-(2-norbornyl)mercuric acetate, (5-acetoxy-exo,exo-tricyclo- [2.2.1.0]hept-3-yl)mercuric chloride [(5-acetoxy-3-nortricyclyl)mercuric chloride] and (cis-exo-2-acetoxynorborn- 5-en-3-yl)mercuric chloride. The sodium borodeuteride reductions provide mixtures and unambiguous assignments of the H spectra were possible either by synthesis of authentic deuterated compounds or on the basis of established H chemical shifts. The signal intensities provide accurate measures of the preferred directions of abstraction by the radicals generally agreed to be involved in these borohydride reductions. In contrast, sodium amalgam reductions are completely stereospecific with retention at carbon, and no rearrangement was observed in the rearrangement-prone nontricyclyl-norbomenyl pair. These results support the idea that the H-incorporating step is electrophilic cleavage of the C-Hg bond, probably in a subvalent organomercury species. The stereochemistries of the (deuterio)alkylcyclohexanes resulting from AIBN-initiated tributylstannane-d reductions of various alkylcyclohexyl bromides were also determined for comparison purposes

    Solid-state 13C-NMR studies of the effects of sodium ions on the gramicidin A ion channel

    No full text
    End-to-end helical dimers of gramicidin A form transmembrane pores in lipid bilayers, through which monovalent ions may pass. The groups within the peptide that interact with these ions have been studied by application of solid-state spectroscopic methods to a series of gramicidin A analogues synthesized with C in selected peptide carbonyl groups. The resonances of d-Leu, d-Leu and d-Leu analogues were perturbed in the presence of 0.16 M sodium ions, whereas the resonances of the carbonyls of Gly, Ala, d-Leu and Val, which are closer to the formylated N-terminal end of the peptide, were unaffected. The observed changes in chemical shift anisotropy are indicative of a change in orientation of the abovementioned leucine carbonyls

    Effect of acyl chain length on the structure and motion of gramicidin A in lipid bilayers

    No full text
    The transmembrane ion transport properties of gramicidin A have previously been shown to be dependent on the nature of its lipid environment. Solid-state NMR spectroscopic studies of C-labelled analogues of gramicidin in oriented multilayers of phosphatidylcholine have shown that variation of the lipid hydrocarbon chain length has no effect on the structure or orientation of the peptide backbone
    corecore