79 research outputs found

    New hybrid materials with porphyrin-ferrocene and porphyrin-pyrene covalently linked to single-walled carbon nanotubes.

    Get PDF
    Novel porphyrin derivatives bearing additional pyrene or ferrocene units as light harvesting antenna systems were synthesized and fully characterized. Following a covalent functionalization approach for single-walled carbon nanotubes (SWCNTs), stable SWCNT suspensions in common organic solvents 10 were produced. Subsequently, the resulting porphyrin-pyrene and porphyrin-ferrocene dyads were incorporated onto the nanotubes' backbone yielding donor-donor-acceptor hybrids. The resulting hybrid materials were soluble in common organic solvents and were characterized using micro-Raman, ATR-IR, UV-Vis and photoluminescence spectroscopy, transmission electron microscopy, thermogravimetric analysis and Δlectrochemistry. Photoluminescence quenching of the porphyrin emission in both hybrid 15 materials was detected thus suggesting the potentiality of these materials in photoelectrochemical cells

    Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P)2[W2(Ό-Br)3Br6]

    Get PDF
    The reactivity of the bimetallic complex (Ph4P)2[W2(Ό-Br)3Br6] ({W2.5W}7+, a'2e3) towards ring opening metathesis polymerization (ROMP) of norbornene (NBE) and some of its derivatives, as well as the mechanistically related metathesis polymerization of phenylacetylene (PA), is presented. Our results show that addition of a silver salt (AgBF4) is necessary for the activation of the ditungsten complex. Polymerization of PA proceeds smoothly in tetrahydrofuran (THF) producing polyphenylacetylene (PPA) in high yields. On the other hand, the ROMP of NBE and its derivatives is more efficient in CH2Cl2, providing high yields of polymers. 13C Cross Polarization Magic Angle Spinning (CPMAS) spectra of insoluble polynorbornadiene (PNBD) and polydicyclopentadiene (PDCPD) revealed the operation of two mechanisms (metathetic and radical) for cross-linking, with the metathesis pathway prevailing

    Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach

    Get PDF
    Titanium dioxide (TiO2) has a strong photocatalytic activity in the ultra-violet part of the spectrum combined with excellent chemical stability and abundance. However, its photocatalytic efficiency is prohibited by limited absorption within the visible range derived from its wide band gap value and the presence of charge trapping states located at the band edges, which act as electron-hole recombination centers. Herein, we modify the band gap and improve the optical properties of TiO2via co-doping with hydrogen and halogen. The present density functional theory (DFT) calculations indicate that hydrogen is incorporated in interstitial sites while fluorine and chlorine can be inserted both as interstitial and oxygen substitutional defects. To investigate the synergy of dopants in TiO2 experimental characterization techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray and ultra-violet photoelectron spectroscopy (XPS/UPS), UV-Vis absorption and scanning electron microscopy (SEM) measurements, have been conducted. The observations suggest that the oxide’s band gap is reduced upon halogen doping, particularly for chlorine, making this material promising for energy harvesting devices. The studies on hydrogen production ability of these materials support the enhanced hydrogen production rates for chlorine doped (Cl:TiO2) and hydrogenated (H:TiO2) oxides compared to the pristine TiO2 reference

    Tuning the reorganization energy of electron transfer in supramolecular ensembles – metalloporphyrin, oligophenylenevinylenes, and fullerene – and the impact on electron transfer kinetics

    Get PDF
    Oligo(p-phenylenevinylene) (oPPV) wires of various lengths featuring pyridyls at one terminal and C60 moieties at the other, have been used as molecular building blocks in combination with porphyrins to construct a novel class of electron donor–acceptor architectures. These architectures, which are based on non-covalent, directional interactions between the zinc centers of the porphyrins and the pyridyls, have been characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. Complementary physico-chemical assays focused on the interactions between electron donors and acceptors in the ground and excited states. No appreciable electron interactions were noted in the ground state, which was being probed by electrochemistry, absorption spectroscopy, etc.; the electron acceptors are sufficiently decoupled from the electron donors. In the excited state, a different picture evolved. In particular, steady-state and time-resolved fluorescence and transient absorption measurements revealed substantial electron donor–acceptor interactions. These led, upon photoexcitation of the porphyrins, to tunable intramolecular electron-transfer processes, that is, the oxidation of porphyrin and the reduction of C60. In this regard, the largest impact stems from a rather strong distance dependence of the total reorganization energy in stark contrast to the distance independence seen for covalently linked conjugates

    Cunning metal core: efficiency/stability dilemma in metallated porphyrin based light-emitting electrochemical cells

    Get PDF
    The syntheses, photophysical/electrochemical characterizations of different metallated porphyrins – i.e., Zn2+, Pt2+, Pd2+, and Sn4+ porphyrins – as well as their first application in light-emitting electrochemical cells are provided. A direct comparison demonstrates that depending on the metallation either efficient (Pt-por) or stable (Zn-por) devices are achieved, demonstrating that the choice of the metal core is a key aspect for future developments

    Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability

    No full text
    International audienceWe report on the first systematic study of cobaloxime-based hydrogen photoproduction in mixed pH 7 aqueous/acetonitrile solutions and demonstrate that H2 evolution can be tuned through electronic modifications of the axial cobalt ligand or through introduction of TiO2 nanoparticles. The photocatalytic systems consist of various cobaloxime catalysts [Co(dmgH)2(L)Cl] (L = nitrogen-based axial ligands) and a water soluble porphyrin photosensitizer. They were assayed in the presence of triethanolamine as a sacrificial electron donor. Optimal turnover numbers related to the photosensitizer are obtained with electron-rich axial ligands such as imidazole derivatives (1131 TONs with N-methyl imidazole). Lower stabilities are observed with various pyridine axial ligands (443 TONs for para-methylpyridine), especially for those containing electron-acceptor substituents. Interestingly, when L is para-carboxylatopyridine the activity of the system is increased from 40 to 223 TONs in the presence of TiO2 nanoparticles
    • 

    corecore