163 research outputs found
Controlled mixing of lanthanide(III) ions in coacervate core micelles
This article presents a facile strategy to combine Eu3+ and Gd3+ ions into coacervate core micelles in a controlled way with a statistical distribution of the ions. Consequently, the formed micelles show a high tunability between luminescence and relaxivity. These highly stable micelles present great potential for new materials, e.g. as bimodal imaging probes
Quantitative NMR microscopy of iron transport in methanogenic aggregates
Transport of micronutrients (iron, cobalt, nickel, etc.) within biofilms matrixes such as methanogenic granules is of high importance, because these are either essential or toxic for the microorganisms living inside the biofilm. The present study demonstrates quantitative measurements of metal transport inside these biofilms using T1 weighted 3D RARE. It is shown that iron(II)-EDTA diffusion within the granule is independent of direction or the inner structure of the granules. Assuming position dependence of the spin-lattice relaxivity, Fick’s law for diffusion in a sphere can be applied to simulate the diffusion within the methanogenic granules under investigation. A relatively low diffusion coefficient of 2.5*10-11 m2·s-1 was
obtained for iron diffusion within the methanogenic granule
MRI of intact plants
Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transport in the stem, e.g., as a function of environmental (stress) conditions. Non-spatially resolved portable NMR is becoming available to study leaf water content and distribution of water in different (sub-cellular) compartments. These parameters directly relate to stomatal water conductance, CO2 uptake, and photosynthesis. MRI applied on plants is not a straight forward extension of the methods discussed for (bio)medical MRI. This educational review explains the basic physical principles of plant MRI, with a focus on the spatial resolution, factors that determine the spatial resolution, and its unique information for applications in plant water relations that directly relate to plant photosynthetic activity
Longitudinal proxy measurements in multiple sclerosis: patient-proxy agreement on the impact of MS on daily life over a period of two years
Background: The use of self- report measurements in clinical settings is increasing. However, in patients with limitations that interfere with reliable self- assessment such as cognitive impairment or mood disturbances, as may be the case in multiple sclerosis ( MS), data collection might be problematic. In these situations, information obtained from proxy respondents ( e. g. partners) may replace self- ratings. The aim of this study was to examine the value of proxy ratings at separate points in time and to assess patient- proxy agreement on possible changes in disease impact of MS. Methods: Fifty- six MS patients and their partners completed the Multiple Sclerosis Impact Scale ( MSIS- 29) at baseline and follow- up, two years later. Patient- proxy agreement was assessed at both time points by calculating intraclass correlation coefficients ( ICCs), exact and global agreement and the mean directional differences between groups. Agreement of change over time was assessed by calculating ICCs between change scores. In parallel, global ratings of both patients and proxy respondents of the extent to which the patient had improved or deteriorated over the past two years were collected to validate possible changes on the MSIS- 29. Results: At both time points, agreement on the physical scale was higher than agreement on the psychological scale ( ICCs at baseline were 0.81 for the physical scale and 0.72 for the psychological scale; at follow- up, the ICC values were 0.86 and 0.65 respectively). At follow- up, statistically significant mean differences between patients and proxies were noted for the physical scale (- 4.8 +/- 12.7, p = 0.006) and the psychological scale (- 8.9 +/- 18.8, p = 0.001). Agreement between change scores on the MSIS- 29 was fair ( ICC < 0.60). Our analyses suggest that the validity of measuring changes over time might be better for proxy respondents compared to patients. Conclusion: Proxy respondents could act as a reliable source of information in cross- sectional studies. Moreover, results suggested that agreement on change over time might be better for proxy respondents compared to patients. Although this remarkable finding should be interpreted cautiously because of several limitations of the study, it does plead for further investigation of this important topic
Quantitative permeability imaging of plant tissues
A method for mapping tissue permeability based on time-dependent diffusion measurements is presented. A pulsed field gradient sequence to measure the diffusion encoding time dependence of the diffusion coefficients based on the detection of stimulated spin echoes to enable long diffusion times is combined with a turbo spin echo sequence for fast NMR imaging (MRI). A fitting function is suggested to describe the time dependence of the apparent diffusion constant in porous (bio-)materials, even if the time range of the apparent diffusion coefficient is limited due to relaxation of the magnetization. The method is demonstrated by characterizing anisotropic cell dimensions and permeability on a subpixel level of different tissues of a carrot (Daucus carota) taproot in the radial and axial directions
The size of the treatment effect: do patients and proxies agree?
Background: This study examined whether MS patients and proxy respondents agreed on change in disease impact, which was induced by treatment. This may be of interest in situations when patients suffer from limitations that interfere with reliable self-assessment, such as cognitive impairment.Methods: MS patients and proxies completed the Multiple Sclerosis Impact Scale (MSIS-29) before and after intravenous steroid treatment. Analyses focused on patient-proxy agreement between MSIS-29 change scores. Transition ratings were used to measure the patient's judgement of change and whether this change was reflected in the MSIS-29 change of patients and proxies. Receiver operating characteristic (ROC) analyses were also performed to examine the diagnostic properties of the MSIS-29 when completed by patients and proxies.Results: 42 patients and proxy respondents completed the MSIS-29 at baseline and follow-up. Patient-proxy differences between change scores on the physical and psychological MSIS-29 subscale were quite small, although large variability was found. The direction of mean change was in concordance with the transition ratings of the patients. Results of the ROC analyses of the MSIS-29 were similar when completed by patients (physical scale: AUC = 0.79, 95% CI: 0.65 - 0.93 and 0.66, 95% CI: 0.48 - 0.84 for the psychological scale) and proxies (physical scale: 0.80, 95% CI: 0.72 - 0.96 and 0.71, 95% CI: 0.56 - 0.87 for the psychological scale)Conclusion: Although the results need to be further explored in larger samples, these results do point towards possible use of proxy respondents to assess patient perceived treatment change at the group level
Highly Pathogenic Avian Influenza Virus H5N1 Infects Alveolar Macrophages without Virus Production or Excessive TNF-Alpha Induction
Highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 causes severe, often fatal pneumonia in humans. The pathogenesis of HPAIV H5N1 infection is not completely understood, although the alveolar macrophage (AM) is thought to play an important role. HPAIV H5N1 infection of macrophages cultured from monocytes leads to high percentages of infection accompanied by virus production and an excessive pro-inflammatory immune response. However, macrophages cultured from monocytes are different from AM, both in phenotype and in response to seasonal influenza virus infection. Consequently, it remains unclear whether the results of studies with macrophages cultured from monocytes are valid for AM. Therefore we infected AM and for comparison macrophages cultured from monocytes with seasonal H3N2 virus, HPAIV H5N1 or pandemic H1N1 virus, and determined the percentage of cells infected, virus production and induction of TNF-alpha, a pro-inflammatory cytokine. In vitro HPAIV H5N1 infection of AM compared to that of macrophages cultured from monocytes resulted in a lower percentage of infected cells (up to 25% vs up to 84%), lower virus production and lower TNF-alpha induction. In vitro infection of AM with H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) than with HPAIV H5N1, while virus production and TNF-alpha induction were comparable. In conclusion, this study reveals that macrophages cultured from monocytes are not a good model to study the interaction between AM and these influenza virus strains. Furthermore, the interaction between HPAIV H5N1 and AM could contribute to the pathogenicity of this virus in humans, due to the relative high percentage of infected cells rather than virus production or an excessive TNF-alpha induction
- …