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Abstract
Over the last few decades, some estuaries have undergone a transition to a hyperturbid state, characterised by suspended
sediment concentrations of several grammes per litre averaged over the water column. To improve our understanding of
this transition and of naturally hyperturbid estuaries, we systematically identify the processes allowing for high suspended
sediment concentrations using a water column (1DV) model. Under a range of realistic forcing conditions, the state of the
water column can be characterised by one of two equilibrium states. The first is an erosion-limited state, in which there
still is sediment available for erosion at the bed. We find that this state only occurs with relatively low concentrations. The
second is a supply-limited state, in which all erodable sediment is in suspension. The concentration in this state depends
entirely on the amount of sediment in the system and can potentially be very high. We identify the conditions under which
the state of the water column can jump from a low to a high concentration and identify hysteresis in the transition between
the two states. The mechanism responsible for this hysteresis is hindered settling. It thus follows that hyperturbidity is only
possible in a supply-limited state. From this observation we derive a necessary condition for an estuarine system to make
the transition from low turbidity to hyperturbidity in a 1DV context. This is an important step towards understanding why
some estuaries are hyperturbid and assessing the risk that particular estuaries may become hyperturbid in the future.

Keywords Hyperturbid · Hindered settling · Regime shift · Estuary · Suspended sediment · High concentration

1 Introduction

Suspended sediment concentrations in estuarine turbidity
maxima range between fairly low suspended sediment con-
centrations of a few tens of mg/L averaged over the water
column, to hyperturbid levels of several 10 g/L (Uncles
et al. 2002). Apart from large variations in sediment con-
centrations between estuaries, there is also a large temporal
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variability of the sediment trapping location. The time-
scale of such variations ranges from the tidal time-scale
up to several years (Jalón-Rojas et al. 2016). Concerning
the variability on a decadal time-scale, it has recently been
highlighted that concentrations have increased significantly
in some estuaries. Examples of such estuaries are the Ems
River, where the average concentration at the surface has
increased from 200 mg/L in the 1950s to over 1 g/L now
(e.g. Talke et al. 2009; Schuttelaars et al. 2013;De Jonge et al.
2014), and the Loire River, where the average concentra-
tion near the surface has increased from around 500 mg/L
in the 1970s to several grammes per litre now (Jalón-Rojas
et al. 2016). This dramatic increase in suspended sediment
concentration has a severe negative impact on light penetra-
tion and oxygen conditions, resulting in a strong reduction
in primary production (e.g. Cloern 1987; Talke et al. 2009).

There are strong indications that this long-term increase
in sediment concentration is related to ongoing human inter-
ventions, including removal of intertidal area, deepening
of navigation channels and continuous dredging to main-
tain the channel at navigation depth. Several studies have
made this connection by using the combined knowledge of
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measurements and model results (Chernetsky et al. 2010;
Winterwerp et al. 2013; De Jonge et al. 2014; Van Maren
et al. 2015). A possible feedback mechanism that could
result in such a transition was proposed by Winterwerp
and Wang (2013). According to their hypothesis, channel
deepening results in tidal amplification and more import of
fine sediment. This sediment leads to a reduction of the
drag and therefore more tidal amplification. This describes
a feedback process, which may induce a strong increase
in concentration, in response to a relatively small deepen-
ing. However, to date, no study has been able to validate
this hypothesis by modelling the transition to a hyperturbid
state as a consequence of one or multiple human inter-
ventions. Neither are the physical mechanisms featured in
the hypothesis fully understood. A better understanding of
these processes is important to make well-founded man-
agement decisions in estuaries that face substantial channel
deepening.

To model the transition to hyperturbidity, at least two
requirements have to be met. Firstly, it requires the avail-
ability of fine sediment. This typically requires an import of
sediment into the system from the sea, the upstream part of
the river or from land. Secondly, once a sufficient amount of
sediment is available for erosion, the water motion should
be able to bring and keep this sediment in suspension.

In this paper, we will focus on the second require-
ment: the ability of the flow to bring and keep sediment in
suspension. The aim of the paper is to gain a better under-
standing of the processes that allow for high suspended
sediment concentrations in the water column. To this end,
the physical processes relating to erosion and settling of sed-
iment in a water column (1DV) model are systematically
investigated. Although we make no explicit comparison to
field data, our parametrisations for erosion and settling are
(semi-)empirical formulations based on laboratory and field
measurements. Furthermore, the sensitivity of the results to
the choice of parametrisations, parameter values, and exter-
nal forcing conditions is analysed, so that the results should
be globally applicable.

A lot of theoretical and experimental work has been
done on individual processes acting on sediment in the
water column, especially related to high concentrations
or fluid mud (see e.g. Mehta 2014, for a review). The
combined effect of many of these processes on sediment
concentrations in water column models has been studied by
for example Winterwerp (2001) and Le Hir et al. (2001).
These studies have mainly focussed on stratification of the
water column and the formation of lutoclines, identifying
sediment-induced turbulence damping and hindered settling
as the most important processes governing the amount of
stratification and the formation of fluid mud from particle
settling. By including these processes, they show that
water column models are able to reproduce much of the

behaviour of suspended sediment stratification observed in
estuaries. Given this knowledge, we will not focus much
on lutoclines and the structure of the suspended sediment
concentration in the water column. Rather, we will focus
on the overall magnitude of the concentration near the bed,
while accounting for stratification of the water column in
our model.

The water column model is introduced in Section 2,
focussing on the formulations for erosion and settling. We
will then discuss our main result in the context of stationary
flows in Section 3 and extend this result to tidal flows in
Section 4. We will qualitatively discuss the consequences
of different model formulations for erosion and settling in
Section 5. Finally, the main findings are summarised in
Section 6.

2Model equations

The water motion and sediment dynamics are described by
the momentum and continuity equations and the sediment
mass balance equation. We concentrate on the vertical
profiles of the velocity and sediment concentration. To this
end, we use a water column model similar to the one used
in Winterwerp (2001). The focus on vertical processes,
thereby ignoring horizontal gradients, is a reasonable
approximation in many estuarine systems, since vertical
exchange processes are typically dominant up to leading
order (see, e.g. the scaling analysis 97 in the models of
Chernetsky et al. 2010; Dijkstra et al. 2017).

In this section, we will focus on the physical formulations
used in the model; for details on the numerical imple-
mentation, the reader is referred to Winterwerp and Van
Kesteren (2004). We assume a hydrostatic flow in a water
column with vertical coordinate z (positive-upwards) that
varies between the bed at z = −H and a fixed surface at
z = 0 (i.e. rigid lid approximation). The flow velocity u is
assumed to be uni-directional and the effects of the Earth’s
rotation are neglected. The vertical density differences are
assumed to be small compared to the actual density, allow-
ing the use of the Boussinesq approximation. The resulting
Reynolds-averaged momentum equation reads

ut = −gζx + (Aνuz)z , (1)

with boundary conditions

Aνuz = 0 at z = 0, (2)

Aνuz = τ

ρ0
at z = −H, (3)

where g is the acceleration of gravity, Aν is the eddy
viscosity, τ is the bed shear stress and ρ0 is a reference
density for water. The subscripts z and t denote derivatives
with respect to space and time respectively. The model
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is forced by a prescribed water level gradient ζx , which
is either constant or varies in time. The bottom boundary
condition is further rewritten using the definition τ =
ρu∗|u∗|, where u∗ is the bed shear velocity. The bed shear
velocity follows from the flow velocity and bed roughness
by assuming that the flow near the bed has logarithmic
profile according to

u

u∗ = 1

κ
ln

(
1 + z + H

z0

)
,

with roughness height z0 and Von Kármán coefficient κ =
0.4.

The eddy viscosity Aν is computed using the k−ε model
and depends on the flow velocity profile and sediment-
induced buoyancy destruction (see Dijkstra et al. 2016 for
details on the numerical implementation of the k − ε model
used here). The sediment-induced vertical density gradient
is related to the sediment concentration through a linear
equation of state ρ = ρw + c(1 − ρw/ρs), where c is the
sediment mass concentration and ρw and ρs are the densities
of water and dry sediment respectively.

The sediment is assumed to consist of a single mud
fraction, so that the sediment dynamics is described by

ct = (wsc + Kνcz)z , (4)

with boundary conditions

wsc + Kνcz = 0 at z = 0, (5)

wsc + Kνcz = D − E at z = −H, (6)

where ws is the settling velocity of sediment flocs and Kν is
the vertical eddy diffusivity. The eddy diffusivity is related
to the eddy viscosity through a constant Prandtl-Schmidt
number as Aν = Kν

σρ
, with σρ = 2 (Van Maren et al. 2009).

At the bed, sediment deposits at a rate D and erodes at
rate E, which are described by

D = wscbed, (7)

E =
{

Ê if Sbed > 0,
min(Ê, wsc) if Sbed = 0,

(8)

Ê = M max

(
0,

τ

τc

− 1

)
. (9)

The deposition rate is defined as the flux of sediment
settling out from the water column on the bed. It therefore
equals wscbed, where cbed is the concentration suspended in
the water column just above the bed.

In order to specify the erosion rate, we first define the
sediment availability. This is denoted by the sediment stock
S (in kg per m2 surface area), which is the sum of the mass
of sediment per m2 at the bed available for erosion, called
Sbed, and the mass of sediment in the water column, i.e. S =
Sbed + ∫ 0

−H
c dz. Next we define the potential erosion Ê as

the erosion rate provided that there is enough sediment at the

bed available for erosion. The potential erosion is normally
described by (semi-)empirical formulations, such as Eq. 9,
which is referred to as Partheniades’ formula (Kandiah
1974), based on experimental work by Partheniades (1962,
1965). In this expression, M is an erosion parameter and
τc is the critical shear stress that needs to be exceeded for
erosion. For simplicity, it is assumed M and τc are uniform
over the depth of the sediment on the bed. The consequences
of relaxing these assumptions are explored qualitatively in
Section 5.

When Sbed equals zero, there is no sediment at the
bed that can be eroded and the erosion rate cannot be
equal to the potential erosion, unless the potential erosion
equals zero. This simply follows from the principle of
mass conservation, i.e. the amount of sediment at the bed
cannot become negative. At maximum, the erosion rate
can compensate for the deposition rate, so that deposited
sediment is re-suspended immediately.

We will refer to conditions where Sbed > 0 as erosion
limited, as the erosive strength of the flow limits the
maximum erosion rate in this state. In literature this is
sometimes referred to as erosion rate limited. The condition
Sbed = 0 is referred to as supply limited, as it is the
sediment supply that limits the erosion rate (e.g. Scully and
Friedrichs 2007; Winterwerp et al. 2012). In literature, this
is alternatively referred to as depth limited, expressing that
the erosion has reached a depth below which sediments are
too consolidated to be suspended given the present flow
conditions. In this research, we will show that these two
states lead to a clearly different behaviour of the water
column. Which of the two states a water column is in
depends dynamically on the flow and the parameters in the
erosion model. In our model simulations, we prescribe the
sediment stock S. Whether the model is in an erosion- or
supply-limited state given this stock follows as a model
result.

When the concentrations in the water column are
high, interactions between sediment particles and the
ambient water reduce the effective settling velocity. To
account for these effects, we use the hindered settling
formulation proposed by Richardson and Zaki (1954).
Their formulation is based on the reasoning that high-
concentration suspensions increase the drag exerted on
particles by the water that flows through the narrow space
between the settling particles. Their parametrisation reads

ws = ws,0(1 − φ)m, (10)

where ws,0 is the settling velocity of a single sediment
floc and φ the volumetric concentration of flocs defined as
c/cgel. The gelling concentration cgel is the concentration
at which the sediment flocs form a self-supporting network
(i.e. fluid mud). The parameter m is determined from
experiments and assumes values between 2.4 and 4.7 for
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coarse to fine particles. The value m = 5, often used in
practice for fine sediment, is taken as the default value
in this article. The effect of other choices for m will be
discussed in Section 5.

2.1 Dimensionless erosion parameter

It is illustrative to consider a stationary flow and assume
there is an abundant sediment supply (i.e. S = ∞, Sbed =
∞). Under these assumptions, ut = 0, ct = 0 and E = Ê.
Integrating the sediment concentration (4) between z =
−H and 0, it follows that deposition balances the potential
sediment erosion, i.e. D = Ê. Substituting (7) for D and
Eq. 9 for Ê, together with Expression (10) for hindered
settling and using φ = c/cgel, the condition D = Ê can be
written as

(1 − φbed)
mφbed = M

ws,0cgel

(
τ

τc

− 1

)
︸ ︷︷ ︸

Ẽ

(τ > τc) , (11)

which relates the near-bed concentration φbed (on the left-
hand side) to a quantity that is defined as the dimensionless
erosion parameter Ẽ. In the results presented in the next
sections, we will use the dimensionless erosion parameter
to characterise the possible equilibrium states of the water
column and show that this parameter is also useful in a
context of non-stationary flows.

3 Results for stationary flows

3.1 Abundant sediment supply

We first assume a stationary flow with an abundant supply
of sediments, so that Eq. 11 defining Ẽ holds. This
expression is a non-linear algebraic equation for φbed that
only depends on the bed shear stress τ and a number
of model parameters. The bed shear stress follows by
vertically integrating the momentum balance (1) and using
the corresponding boundary conditions. It then follows that
τ = ρ0gHζx . As the model is forced by ζx , τ is known
a priori. Hence, φbed can be obtained by resolving near-
bed processes, without solving for the entire water column.
Thus, φbed does not depend on turbulence in the water
column.

Figure 1 shows the resulting equilibrium near-bed
concentration φbed as a function of Ẽ. We distinguish
between two regions in this graph. In region I (0 <

Ẽ < Ẽcrit), two solutions for the near-bed concentration
exist. However, linear stability analysis shows that only
the solution depicted by the solid line is a stable solution,
meaning that a system close to the equilibrium state
evolves towards its equilibrium over time. The near-bed

Fig. 1 Equilibrium conditions for the near-bed dimensionless concen-
tration φ = c

cgel
for a stationary flow. In range I the solid line indicates

a stable equilibrium and the dashed line indicates an unstable equilib-
rium. No equilibrium exists in range II, where the concentration may
theoretically increase without bounds

concentrations on this stable solution branch have values
up to φ = 0.16. These concentrations can be high (up
to 16 g/l assuming a gelling concentration of 100 g/l), but
are significantly smaller than the gelling concentration. The
dashed line depicts an unstable solution, meaning that a
system close to, but not exactly in this state, will move away
from it over time.

The behaviour of the solution if it is not in equilibrium is
best seen from the depth-integrated concentration (4)
∫ 0

H

ct dz = E − D.

Left of the equilibrium curve D > E and the depth-
integrated concentration decreases over time. Conversely,
on the right of the equilibrium curve, E > D and the
concentration increases over time. Correspondingly, if the
near-bed concentration is above the unstable equilibrium
(dashed line), the system will continue to erode sediment
and, within this model, the concentration will increase
without bound.

In region II (Ẽ > Ẽcrit) we are on the right of
the equilibrium curve and the concentration continues to
increase, regardless of the initial concentration. This is
possible because of the effects of hindered settling: as the
concentration increases due to erosion, hindered settling
leads to a decrease in the settling velocity and therefore
in the rate of sediment deposition. As a consequence,
the net erosion rate of the system increases leading to a
further increase of the concentration and reduction of the
deposition.

The change in model behaviour as one moves from
region I into II is known mathematically as a bifurcation.
This bifurcation exists, because the left-hand side of Eq. 11,
which represents a dimensionless deposition flux wsc

ws,0cgel
,

has a maximum. If φ is small, the deposition flux increases
with φ, as the settling velocity is virtually constant and the
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sediment concentration increases. However, if φ is large,
hindered settling has such a strong effect in decreasing the
settling velocity, that the total deposition flux decreases with
increasing φ.

3.2 Limited sediment availability

By limiting the sediment stock, the suspended sediment
concentrations remain finite for all time. The equilibria are
shown in Fig. 2. The equilibrium branches in Section 3.1 are
still present and are shown in blue. Added to this are two
new (orange) branches which result from setting a finite
stock S of 15 (lower branch) and 150 kg/m2 (upper branch).
On these branches, all available sediment is suspended in the
water column, preventing a further increase in concentra-
tion. This equilibrium is therefore referred to as supply
limited, corresponding to the definition of supply limited
given in Section 2 for the erosion rate. Naturally, a larger
value of the stock leads to larger values of φbed. Regardless
of the stock, the supply-limited solution exists for all values
of Ẽ in region II, so that the concentration is bounded for all
model settings. It also extends into region I, where it ceases
to exist when it crosses the erosion-limited solution. At this
point, the flow velocity and effect of hindered settling are
no longer sufficient to keep all the available sediment in
suspension and the concentration reduces towards the sta-
ble blue branch. On the blue branch, some of the available
sediment remains on the bed and the suspended sediment
concentration is restricted by the ability of the flow to erode
and keep sediment in suspension. This is referred to as
an erosion-limited equilibrium, also corresponding to the
definition of erosion limited in Section 2.

Contrary to the erosion-limited case, the supply-limited
solution cannot be computed from the near-bed balance

Fig. 2 Equilibrium conditions for the near-bed dimensionless concen-
tration for a stationary flow as in Fig. 1, with the addition of supply-
limited branches for two different values of the stock, indicated by the
orange lines. The lower orange line corresponds to S = 15 kg/m2, the
upper orange line corresponds to S = 150 kg/m2. On these lines, all
available sediment is suspended in the water column. The arrows illus-
trate how a system can jump from one branch to another for increasing
Ẽ (from point a to b) and decreasing Ẽ (from b to c and further)

E = D. This is because E reduces to D in this state (see the
definition of erosion (8)) and the condition E = D reduces
to the trivial wscbed = wscbed. In this case, the restricting
condition reads S = ∫ 0

−H
c dz, i.e. all sediment is suspended

in the water column. This means that the near-bed concen-
tration depends on the distribution of the sediment over the
water column and thus on both the turbulence profile and
hindered settling. Hence, the near-bed concentration fol-
lows from the water column model. The parameters for this
model are assigned default values, which are presented in
Table 1. The model uses 400 numerical grid cells and a time
step of 5 s. We have conducted 40 model experiments with
different values for the water level gradient. We start with
the largest water level gradient and run the model for a suf-
ficiently long time, until a stationary state is attained. Next,
the water level gradient is decreased and the model is run
again, using the result of the previous experiment as ini-
tial condition. This ensures that the solution remains on the
supply-limited branch provided this branch still exists.

The supply-limited solutions in Fig. 2 are the orange
down-sloping curves. The near-bed concentration decreases
with increasing Ẽ because we vary ζx in the model
experiments. This not only leads to a variation in Ẽ via the
bed shear stress, but also to a variation in the rate of mixing
of the water column. As a result, a larger Ẽ coincides with
a more well-mixed water column. As the same amount of
sediment is in suspension for all solutions on the branch,
the near-bed concentration decreases as Ẽ increases. This
is also illustrated by the vertical sediment profiles plotted
in Fig. 3, where the profiles from light to dark colours are
obtained by increasing Ẽ from 0.015 to 0.15.

The distinction between erosion- and supply-limited
equilibrium states has profound implications for hypertur-
bidity. Near-bed concentrations associated with hypertur-
bidity are of the order of the gelling concentration. However,
the maximum near-bed concentration in a stable erosion-
limited state is only approximately φbed = 0.16 according to
this model, one order of magnitude smaller than the gelling
concentration. In order for a system to be hyperturbid, it
therefore needs to be supply limited. A water column can
only be supply limited with φbed > 0.16 if it satisfies the

Table 1 Model configuration in all experiments, unless denoted
otherwise in the text and figure captions

Symbol Explanation Value

H Depth 10 m

z0 Roughness height 10−4 m

M Erosion parameter 2 · 10−3 gm/(Ls)

τc Critical shear stress 0.1 Pa

cgel Gelling concentration 100 g/L

ws,0 Clear-water settling velocity 2 · 10−3 m/s
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Fig. 3 Vertical profiles of the sediment concentration along the
supply-limited branch with S = 150 kg/m2. The profiles are plotted
for a range of values of ζx from 0 to 5·10−5. Correspondingly Ẽ ranges
from 0 to 0.8. The colours indicate increasing ζx or increasing Ẽ (i.e.
light colours: small ζx , dark colours: large ζx

criterion Ẽ > Ẽcrit, or has satisfied this criterion at some
point in its history and has stayed on a supply-limited
equilibrium branch with high concentrations (see below).

Figure 2 also has profound implications for the ways
in which a transition between branches occurs. Consider
a system on the erosion-limited stable equilibrium branch
(e.g. at point a in the figure). Next, consider some change
to, for example, the bed shear stress such that Ẽ increases
beyond Ẽcrit. The system will then evolve over time to a
supply-limited equilibrium, e.g. at point b in the figure. If
there is a sufficient amount of sediment available, this leads
to a catastrophic increase in concentration. If the change
to Ẽ is completely reversed, the potential erosion is still
larger than the deposition. Therefore, all sediment remains
suspended in the water column and the system remains on
the supply-limited branch, with even higher concentrations
near the bed (point c in the figure). A transition back to the
erosion-limited equilibrium branch will only happen if Ẽ is
further reduced to below the point where the supply-limited
branch starts. The erosion and supply-limited branches thus
describe hysteresis between the transition from low to high
concentrations and back.

4 Extension to tidal flows

The instantaneous bed shear stress in tidal flows varies
from its maximum at peak ebb or flood to virtually zero at
slack tide. As a result, the near-bed sediment concentration
varies over the tidal cycle. To demonstrate this, we force
the water column model by a tidally varying water level
gradient consisting only of an M2 tidal constituent: ζx =
|ζx | cos(ωt), where |ζx | denotes the amplitude of the forc-
ing and ω is the angular frequency of the M2 tide. Figure 4
shows model results for |ζx | = 10−5 (left) and 2.1 · 10−5

(right), an infinite sediment supply and all other variables

having their default values (Table 1). The figure shows the
temporal evolution of the near-bed volumetric concentra-
tion as a function of the dimensionless erosion parameter
during half a tidal cycle from slack tide to peak tide and
back to slack tide. The solid and dashed blue lines in the
figure indicate the stationary equilibrium and are identi-
cal to the solution in Fig. 1 obtained for stationary forcing
conditions. In Fig. 4a, the tidal forcing is small, leading to
a small concentration and small amplitude of the dimen-
sionless erosion parameter. The tidal signal is always close
to the solid line that indicates the stationary equilibrium.
Therefore, it is concluded that the change of the concentra-
tion during the tidal period is small enough to adjust to the
stationary equilibrium at all time.

Figure 4b shows the temporal variation of the near-bed
concentration for a larger tidal forcing. The concentration
now deviates significantly from the stationary equilibrium.
During accelerating tide, the concentration increases, but
remains below the stationary equilibrium concentration.
Conversely, during most of the decelerating tide, the
concentration decreases, but remains above the equilibrium
concentration. At peak tide, the maximum value of Ẽ is
attained and Ẽ exceeds Ẽcrit, allowing for an unbounded
increase of the concentration. After peak tide, Ẽ still
exceeds Ẽcrit for some time resulting in a further increase of
the near-bed concentration, even though the bed shear stress
already decreases. The increase of the concentration only
stops when the pair (φbed, Ẽ) crosses the unstable stationary
equilibrium (dashed line), well after peak tide. Within the
remainder of the time until slack tide, the concentration
reduces to almost zero. Therefore, there is no net change of
the concentration over the tidal cycle.

Figure 4c, d visualises the same experiments in a
different way, by plotting the effective settling velocity
versus t/T , where T is one tidal period. For the weak tidal
forcing, the variation in settling velocity is weak and in
phase with the tidal velocity near the bed. For the stronger
tidal forcing, the variation in settling velocity is stronger
and we again see that the lowest settling velocity (highest
concentration) is attained after peak tidal velocity.

Even though the concentration varies over the tidal cycle,
we are mainly interested in the average behaviour over a
tidal cycle. Therefore, we will further consider the tidally
averaged concentration. It is not possible to find a relation
between the tidally averaged near-bed concentration 〈φbed〉
and the tidally averaged dimensionless erosion parameter
〈Ẽ〉 only on the basis of near-bed processes, as was the case
in stationary flows (see Appendix for details). Therefore,
the water column model has to be solved for different tidal
forcing conditions.

In these experiments, we force the water motion by a
prescribed tidally varying water level gradient, an infinite
stock and use the default parameter values (Table 1). Each
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Fig. 4 Top: instantaneous values
of φbed and Ẽ for half a period
of an M2 tidal wave for two
forcing strengths. This is
compared to the stationary
equilibrium branch (blue line).
At slack tide, Ẽ = 0, while Ẽ is
at its maximum for peak flood
and ebb velocities. Bottom: the
same simulations but now
visualising the effective settling
velocity versus dimensionless
time over one M2 tidal cycle

(a)

(b)

(c)

(d)

experiment for one value of |ζx | is allowed a sufficiently
long spin-up time to attain periodic conditions, resulting in
a single equilibrium value of 〈Ẽ〉 and 〈φbed〉. The branch
of stable equilibrium states is constructed by repeating this
procedure for various water level gradient amplitudes. The
resulting branch is plotted as the green solid line in Fig. 5a.
For small values of 〈Ẽ〉 this branch corresponds closely to
the stationary equilibrium branch (solid blue line). This is
because the concentrations are small and are almost equal
to the stationary equilibrium concentration throughout every
instance of the tidal cycle (cf. Fig. 4a). For increasing 〈Ẽ〉,
the tidal and stationary branches start to differ. For these
settings it is found that 〈Ẽ〉crit is smaller in the tidal case
than in the stationary case. To see why this is possible,
consider some value of 〈Ẽ〉. The instantaneous value of Ẽ

is smaller than 〈Ẽ〉 during approximately half of the tidal
cycle and larger during the remainder of the tidal cycle. If
〈Ẽ〉 is sufficiently large, the instantaneous Ẽ also exceeds
the instantaneous Ẽcrit for some smaller time interval of the
tidal cycle. If, during this time interval, the concentration
increases so much that the concentration cannot decrease
back during the remainder of the tidal cycle, the average
concentration keeps increasing over time and no equilibrium
condition can be found. This means we are in domain II (cf.
Fig. 1 for stationary flows) and we must have passed the
critical point. It depends on the model settings how long Ẽ

has to exceed Ẽcrit before this happens. We will elaborate
on this below.

The unstable equilibrium branch is, by definition, never
obtained using time-integration models. Nevertheless, this
branch can be inferred from the model by introducing a
limited sediment availability. As demonstrated in Fig. 2 for
stationary flows, a limited sediment availability results in a
new branch of stable supply-limited equilibrium solutions.
This branch exists at all values of Ẽ on the right side of
the equilibrium curve. By running the model for various
values of the sediment availability and water level gradient
amplitude, we find various supply-limited branches. The
left-most endpoints of these supply-limited branches mark
the location where they cross the unstable equilibrium. This
way, the unstable equilibrium solution can be reconstructed.
The resulting line of unstable equilibria is plotted as the
dashed green line in Fig. 5a. This is constructed from the
result of over 4000 model simulations with the M2 water
level gradient amplitude |ζ |x varying between 0 and 5 ·10−5

and the sediment stock varying between 5 and 400 kg/m2.
The result for a sediment stock of 15 kg/m2 is plotted as the
orange supply-limited equilibrium line.

Figure 5b shows the erosion-limited equilibrium
branches and a supply-limited branches (S = 100 kg/m2)
for a different set of parameter values. We have decreased
the erosion parameter M to 2 · 10−4 g m/(L s) and increased
the range of |ζx | between 0 and 5 · 10−4. Compared to the
default value of M , a larger |ζx | and thus a higher degree of
vertical mixing is required to suspend the same amount of
sediment. This leads to a more uniform distribution of the
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(a) (b)

Fig. 5 Equilibrium values of the tidally averaged near-bed concentra-
tion for an M2 tidal flow constructed by varying |ζx |. The green line
indicates the erosion-limited stable (solid line) and unstable (dashed
line) branches. The orange line indicates a supply-limited branch for

a given sediment supply. For reference, the blue line indicates the sta-
tionary erosion-limited equilibrium branches and is the same as in
Fig. 1

sediment over the water column. Therefore, a much higher
stock is required to find a supply-limited branch at similar
values of φbed compared to the results shown in Fig. 5a.

The value of 〈Ẽ〉crit in Fig. 5b is almost the same as
the instantaneous critical value, and significantly larger
than the critical value in Fig. 5a. As this concerns the
tidal average in a symmetric tide, this implies that the
instantaneous Ẽ exceeds the stationary critical value for
almost half the tidal cycle. However, in this time, the
concentration does not increase so much that it cannot return
to low values around slack tide. In other words, the time-
scale for the concentration to change is longer. This can
be explained from a rough scaling analysis of the depth-
integrated version of Eq. 4. After applying the boundary
conditions, this equation reads(∫ 0

−H

c dz

)
t

+ wscbed − Ê = 0. (12)

Let C̄ denote a typical depth-averaged concentration and
T denote a time-scale at which the average concentration
changes, then HC̄

T
∼ −wscbed + Ê, i.e.

T ∼ HC̄

−wscbed + Ê
.

The depth-averaged concentration scales with the near-bed
concentration and with some increasing function of the
eddy diffusivity. In other words, an increase in the eddy
diffusivity at the same near-bed concentration, leads to an
increase in the depth-averaged concentration. Therefore,
at the same near-bed concentration and potential erosion,
a higher degree of mixing of the water column leads to
a higher value of C̄ and thus a larger time-scale for the

concentration to change. For an even larger tidal forcing and
smaller erosion parameter, 〈Ẽ〉crit can exceed Ẽcrit.

The steepness of the tidal equilibrium curve in Fig. 5b
is fairly similar to that of the stationary curve, indicating
that sediment-induced turbulence damping is not important.
This is because the tidal forcing is so strong that only very
high concentrations cause stratification. However, at such
concentrations, the fall velocity decreases due to hindered
settling, therefore leading to a more uniform distribution of
sediment over the water column and reducing stratification.
This phenomenon has for example been observed in the
Yellow River (Van Maren et al. 2009).

Though the horizontal axis of Fig. 5 shows the
dimensionless erosion parameter, the model results where
obtained by varying the water level amplitude. A change
in the water level gradient amplitude not only affects Ẽ

through the bed shear stress, but also affects the rate
of mixing of the water column. A variation of another
parameter, such as the erosion parameter only affects Ẽ and
not the rate of mixing. Figure 6 again shows the stable and
unstable equilibrium solution branches, but now obtained
by varying the erosion parameter M at a fixed value of
|ζx | of 10−4. The orange supply-limited branch corresponds
to S = 100 kg/m2. Similar to Fig. 5b, 〈Ẽ〉crit is close
to the stationary critical value, because the tidal forcing
is relatively large and the time-scale for the concentration
to change is relatively long. The main difference with the
figures found before is the shape of the supply-limited
branches. These are more flat or even slightly upward
sloping. This is because a change in Ẽ now does not
coincide with enhanced or decreased mixing of the water
column; the vertical distribution of sediment remains the
same at different values of Ẽ.
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Fig. 6 Similar to Fig. 5a, but now for |ζx | = 10−4, S = 100 kg/m2

and varying erosion parameter M . Because M is varied instead of |ζx |,
the supply-limited branch is no longer downward sloping

4.1 Role of hindered settling

In a tidal flow, the instantaneous sediment concentration
changes constantly in the direction of the stationary
equilibrium or keeps increasing if a stationary equilibrium
does not exist. The essential mechanism explaining the
bifurcation in the stationary case therefore also explains the
bifurcation in the tidal case. This mechanism is hindered
settling. Additional to hindered settling, inertia is important
in tidal flows: the instantaneous Ẽ needs to exceed Ẽcrit for
a sufficiently long time for the concentration to move away
from the erosion-limited equilibrium.

In order to further support the conclusion that hindered
settling is essential for the bifurcation, we again consider
the depth-integrated sediment balance (12) without hindered
settling. We assume a dynamic tidal equilibrium exists and
take the tidal average. The result reads

〈φbed〉 =
〈

M0

ws,0cgel
max

(
0,

τ

τc

− 1

)
︸ ︷︷ ︸

Ẽ

〉
, (13)

i.e. the tidally averaged near-bed concentration depends
linearly on the dimensionless erosion parameter and does
not depend on the rate of turbulent mixing of the water
column. For comparison, the solution with hindered settling
leads to the non-linear relation 〈(1 − φbed)

mφbed〉 = 〈Ẽ〉
(see Eq. 20 in Appendix). The solution without hindered
settling is plotted in Fig. 7 (blue line). Clearly, there is no
bifurcation. High near-bed concentrations of the order of the
gelling point can nevertheless be attained, but only at values
of 〈Ẽ〉 which are one order of magnitude larger than in the
case with hindered settling (compare Ẽcrit = 0.067).

The figure also shows the depth- and time-averaged
concentration without hindered settling, with and without
sediment-induced turbulence damping (red solid line and
red dotted line respectively). In these experiments, all
parameters have their default values (Table 1), the stock
is infinite and the variation of 〈Ẽ〉 is obtained by varying

Fig. 7 Relation between 〈φbed〉 and the tidally averaged dimensionless
erosion parameter if hindered settling is removed from the model.
The blue line shows the near-bed concentration. The red line shows
the depth-averaged concentration, compared to the depth-averaged
concentration if both hindered settling and sediment-induced damping
are omitted (red dotted line). The figure is obtained by varying the tidal
M2 amplitude of ζx in the model

|ζx |. The figure shows that sediment-induced turbulence
damping has a significant effect by reducing the depth-
averaged concentration compared to the situation without
turbulence damping. It also shows that turbulence damping
alone does not lead to any bifurcations.

5 Discussion

In this section, we investigate the sensitivity of the
model results to different parametrisations and parameter
choices. In Section 5.1, we discuss several formulations
and parameter choices related to hindered settling. In
Section 5.2, we look at several formulations for erosion.
Finally, the role of flocculation is discussed in Section 5.3.
An exhaustive discussion of each available formulation is
beyond the scope of this paper, but the influence of different
parametrisations will be at least qualitatively discussed and
the methodology to perform an in-depth analysis will be
indicated where deemed necessary.

5.1 Other parametrisations of hindered settling

The existence of a limit point when the erosion parameter
attains a critical value, depends crucially on hindered settling.
Three parametrisations of hindered settling prevail in liter-
ature. The first is the formulation proposed by Richardson and
Zaki (1954) (see Eq. 10), in which the parameter m is empi-
rical and still needs to be chosen. Laboratory measurements
indicate m is likely between 2 and 5. The second
formulation is by Dankers and Winterwerp (2007). It reads

ws = ws,0
(1 − φ)m(1 − φp)

1 + 2.5φ
. (14)
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Here, φp is the volumetric concentration of primary
particles, defined as c/ρs , with ρs the dry density of the
soil. Dankers and Winterwerp (2007) propose m = 2 after
a comparison to measurements. The third formulation is
by Toorman and Berlamont (1993), in which we neglect
the contribution related to consolidation and rewrite to our
notation as

ws = ws,0e
−αφ, (15)

where α is an empirical parameter. Mehta (2014) sum-
marises data from three studies, with α ranging between 5.5
and 8. Here we use α = 7, but the results are qualitatively
the same for all values in this range.

Figure 8 shows the stable and unstable erosion-limited
branches in a stationary flow for various values of m in
Eq. 10, m = 2 in Eq. 14 and α = 7 in Eq. 15. All curves
show the same characteristics as found before: the existence
of a bifurcation point, where one stable and one unstable
solution branch meet. The various curves only differ in the
value of the critical dimensionless erosion parameter and the
corresponding near-bed concentration.

As was explained in Section 3, the necessary condition
for the existence of a bifurcating solution is the existence
of a maximum of the settling flux. This is obtained for
all hindered settling parametrisations studied here. For the
Richardson and Zaki (1954) formulation this bifurcation
point can be easily derived to occur at φ = 1

m+1 . The value

of Ẽcrit can also be expressed analytically in terms of m and

is given by
(

m
m+1

)m
1

m+1 .

Fig. 8 Stationary equilibrium branches for different parametrisations
of hindered settling. The lines marked RZ refer to the Richardson
and Zaki (1954) formulation (10) for different values of the parameter
m. The line marked DW refers to the Dankers and Winterwerp
(2007) formulation (14). The line marked TB refers to the Toorman
and Berlamont (1993) formulation (15). All formulations essentially
display the same characteristic of a bifurcation point separating a stable
and unstable branch. The tick marks on the horizontal axis show the
location of the bifurcation point on the RZ and TB curves. The location
on the DW curve is Ẽ = 0.086

5.2 Other descriptions of erosion

Although much experimental work has been done on
erosion, there is no consensus on the best mathematical
description of erosion (e.g Sanford and Maa 2001; Mehta
2014). One popular formulation for erosion can be
generalised as

Ê = M(z̃, t)max

(
0,

τ (t)

τc(z̃, t)
− 1

)n

, (16)

where z̃ indicates the depth of erosion relative to the bottom
of the water column (z = −H ). Many variations on this
model exist in which the time- and/or depth-dependence
of the erosion parameter M or critical shear stress are
omitted. The time- and depth-dependence of τc is often
associated with consolidation, but may also be related to
biological influence (e.g. Le Hir et al. 2007). The erosion
parameter M is often kept constant over time and depth, but
may be allowed to vary related to sediment composition or
consolidation (e.g. Sanford and Maa 2001). Often n = 1,
M(z̃, t) = M and τc(z̃, t) = τc are chosen for practical
reasons. In this case, this formulation is typically associated
with well-consolidated soils (referred to as type II erosion).
Another formulation for erosion reads

Ê = Ef (z̃, t) exp

(
α

(
τb(t)

τc(z̃, t)
− 1

))
. (17)

This form is sometimes favoured for unconsolidated soils
(referred to as type I erosion), where the strength varies with
depth.

The results presented in this paper do not hold for all
forms of the general erosion formulations (16) and (17)
with arbitrary t or z dependence. It depends on the exact
formulation if the same qualitative results hold. We will not
go into the effect of choosing any particular form of these
general erosion formulations, as there is not one standard
form other than Partheniades’ formulation, which is used
throughout this paper. The purpose of this section is to show
that the same methods applied in this paper can be applied
to study many forms of the erosion formulation. This mainly
requires a suitable redefinition of Ẽ. We will illustrate how
one may determine Ẽ and the existence of a bifurcation
point in this case by a simple example.

Consider a stationary flow forced by a constant water
level slope. Let the critical shear strength increase with
depth, e.g. due to consolidation, and let the erosion be
described by Eq. 16 with n = 1. The condition for the
equilibrium near-bed concentration of Eq. 11 is modified to

(1 − φbed)
mφbed = M

ws,0cgel

(
τ

τc(z̃)
− 1

)
.
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Reordering this expression yields

(
(1 − φbed)

mφbed + M

ws,0cgel

)
τc(z̃) = M

ws,0cgel
τ

︸ ︷︷ ︸
Ẽ

, (18)

where all terms depending on φ are on the left-hand side,
including τc, which depends on φ through z̃. Within this
formulation, the right-hand side should be considered as
the dimensionless erosion parameter, i.e. Ẽ = M0

ws,0cgel
τ .

Equation 18 has a bifurcation point if the left-hand side of
this expression has a maximum. Whether this is the case
depends on the relation between the critical shear stress
and φbed. If a maximum to the left-hand side of Eq. 18
exists, the results of this paper also hold qualitatively for this
erosion formulation. If there is no such maximum, the stable
erosion-limited solution branch exists for all values of Ẽ.
High concentrations can then be attained for erosion-limited
conditions and no hysteresis is observed in the transition
between low- and high-concentration states.

5.3 Role of flocculation

Fine cohesive sediments are known to flocculate. The size
and fall velocity of sediment flocs may differ from that
of the primary sediment particles by several orders of
magnitude. It is known that the degree of flocculation
depends on the concentration of primary particles and shear
stress in the water column. Therefore, the flocculation also
varies with φbed and Ẽ and is expected to modify the
equilibrium curves in φbed-Ẽ space.

Experiments on flocculation show that the fall velocity
of the sediment increases due to flocculation processes, but
only up to values of φ around 0.1 (see e.g Figure 5.3 of
Winterwerp and Van Kesteren 2004, and references therein).
For higher volumetric concentrations, hindered settling
takes over and dominates the settling velocity. Therefore,
it is expected that flocculation only modifies the shape
of the erosion-limited equilibrium branch in the φbed-Ẽ
diagram. Taking ws,0 as the settling velocity of flocs at Ẽ =
Ẽcrit, the unstable branch and Ẽcrit are hardly affected by
flocculation. Flocculation is therefore not expected to have
any important implications for the results found in this paper.

5.4 Necessity of hindered settling to reproduce high
concentrations

The theory developed in this work helps to explain why
some estuaries and coastal systems can support very high
suspended sediment concentrations, while the bed shear
stress is not particularly high. Here, we demonstrate this
using two examples. The first is of the Amazon shelf, with
concentrations of more than 100 g/l (Kineke and Sternberg

1995), while the average bed shear stresses are estimated
by model studies to be of the order of 1 Pa (Gabioux
et al. 2005). The second example is the Ems River, where
concentrations of over 30 g/l have been observed (Talke
et al. 2009), while bed shear stresses are up to 2 Pa (Van
Maren et al. 2015). We compute the order of magnitude of
the tide-averaged dimensionless erosion parameter for these
systems, using its definition (11). The erosion parameter
M is a calibration parameter in most models. The critical
bed shear stress τc can be measured, but has a significant
measurement uncertainty and natural variability. However,
both parameters have a well-established range of typical
values. We estimate M to be of the order of 10−4 −10−3 g/l
m/s and τc in the range 10−1−101 Pa (see, e.g. Partheniades
2010). We assume a typical order of magnitude of the
settling velocity of 1 mm/s and cgel of 100 g/l. For the
Amazon shelf and the Ems River, this means that typical
values of 〈Ẽ〉 are 10−3 to 10−1.

If the effects of hindered settling were not included in
the model, the mean value of Ẽ equals the mean near-
bed volumetric concentration (also see Eq. 13). This means
that φ can at maximum attain concentrations of around
10−1, corresponding to 10 g/l with the current choice of
the gelling concentration. This is much lower than the
concentrations observed on the Amazon shelf and also lower
than the concentrations observed in the Ems River. Without
hindered settling the observed concentrations can therefore
not be reproduced using realistic parameter settings. In a
model that includes the effects of hindered settling, the
only requirement for obtaining high concentrations is that
〈Ẽ〉 exceeds 〈Ẽ〉crit, which is of the order of magnitude of
Ẽcrit = 0.067. This value is within the range of typical
values

Apart from requiring a sufficiently high 〈Ẽ〉, high
concentrations also require a large supply of sediment. In
estuaries like the Ems, where the sediment mainly enters
at the mouth of the estuary, this requires a strong trapping
of sediment. This trapping depends on the along-channel
dynamics of the system and has not been investigated in
this study. The role of hindered settling on the trapping
behaviour of systems like the Ems thus still needs to be
investigated.

6 Conclusions

Over the last several decades, some estuaries have
undergone a transition from low or average turbidity levels
to a so called hyperturbid state. In order to improve our
understanding of this transition, we have systematically
identified the essential processes that allow for high
suspended sediment concentrations in an estuarine water
column. We adopt a framework where we characterise the
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dynamic equilibrium state of the water column as either
erosion or supply limited. In the erosion-limited state, the
concentration is bounded by the ability of the flow to erode
and keep sediment in suspension. In the supply-limited
state, all available sediment is suspended in the water
column, so that the maximum concentration is bounded by
the amount of sediment available in the system.

The behaviour of the water column in these equilibrium
states can be described in terms of a time-averaged
dimensionless erosion parameter 〈Ẽ〉, which parametrises
the rate of erosion. If 〈Ẽ〉 is above some threshold 〈Ẽ〉crit,
only the supply-limited equilibrium exists and the actual
concentration entirely depends on the amount of sediment
in the system. This potentially allows for extremely high
concentrations. For values of 〈Ẽ〉 below the threshold, both
types of equilibria may exist. Provided the sediment supply
is sufficiently large, this implies that the flow can be in one
of two states: an erosion-limited state with relatively low
concentrations and a supply-limited solution with relatively
high concentrations. The actual state of the system depends
on its history. If a system is in the low-concentration,
erosion-limited state, it can only jump to the supply-limited
state if 〈Ẽ〉 increases beyond the threshold value. This
might result in a dramatic increase in concentration. The
jump back from the supply limited to the erosion-limited
state only happens for 〈Ẽ〉 significantly smaller than the
threshold, so that there is hysteresis in the transition between
the two equilibrium states.

The threshold value of 〈Ẽ〉 and the hysteresis in the
transition between states exist because of the effects of
hindered settling. These phenomena therefore disappear
if hindered settling is not taken into account, strongly
altering the behaviour of the model. Hindered settling
allows for a positive feedback loop that might lead to a
catastrophic increase in concentration if 〈Ẽ〉 exceeds the
threshold. An investigation into the different formulations
and parameter values parametrising hindered settling
shows that this behaviour is a robust characteristic of
all known formulations for hindered settling. Sediment-
induced damping of turbulence is often thought to be an
essential mechanism promoting a sudden transition between
states of low and high sediment concentration, but is
found to play no essential role in the behaviour identified
here. However, it is important for the vertical distribution
of sediment over the water column and quantitative
determination of the threshold value for 〈Ẽ〉 in tidal flows.

The high suspended sediment concentrations observed in
some estuaries are only possible in a supply-limited state.
Therefore, it can be concluded that hyperturbid systems
should at least satisfy the criterion 〈Ẽ〉 > 〈Ẽ〉crit or have
satisfied this criterion at some point in the past. This
observation is an important step towards the understanding
of why some systems have become hyperturbid and the

assessment of the risk that a particular non-hyperturbid
system may become hyperturbid in the future.
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Appendix : Vertical coupling of the near-bed
concentration in non-stationary flows

For stationary flows, the near-bed concentration can be
obtained simply by considering the local balance of erosion
and deposition at the bed, without solving for the entire
water column. In this Appendix we will show that this is
no longer possible in non-stationary flows. Let us assume
and abundant sediment supply (Sbed = ∞) and consider the
sediment balance of Eq. 4. Dividing by cgel, integrating this
balance between z = −H and 0 and using the boundary
conditions yields(∫ 0

−H

φ dz

)
t

+ wsφbed − Ê

cgel
= 0. (19)

We will assume periodic conditions for the flow and concen-
trations and take the time-average of the above expression.
Next, substituting the expressions for the erosion (9) and
hindered settling (10) and dividing by cgel, yields

〈
(1 − φbed)

mφbed
〉 =

〈
M0

ws,0cgel
max

(
0,

τ

τc

− 1

)〉
, (20)

where 〈·〉 denotes the tidal average. Due to the non-linearity
of this expression, the average concentration 〈φbed〉 cannot
be directly inferred from the left-hand side of the equation,
without knowledge on the tidally varying signal of φbed. The
tidally varying φbed follows from Eq. 19, which involves
an integral over the entire water column. Therefore, the full
water column model is required to solve for the average
near-bed concentration in non-stationary flows.
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