2,373 research outputs found
Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3: plasma plume effects
Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3 interfaces has
been analyzed with a focus on the kinetic energy of the ablated species. LaGaO3
and LaAlO3 plasma plumes were studied by fast photography and space-resolved
optical emission spectroscopy. Reflection high energy electron diffraction was
performed proving a layer-by-layer growth up to 10-1 mbar oxygen pressure. The
role of the energetic plasma plume on the two-dimensional growth and the
presence of interfacial defects at different oxygen growth pressure has been
discussed in view of the conducting properties developing at such
polar/non-polar interfaces
Charge localization at the interface between La1-xSrxMnO3 and the infinite layers cuprate CaCuO2
(CaCuO2)m/(La0.7Sr0.3MnO3)n superlattices, consisting of the infinite layers
cuprate CaCuO2 and the optimally doped manganite La1-xSrxMnO3, were grown by
pulsed laser deposition. The transport properties are dominated by the
manganite block. X-Ray Absorption spectroscopy measurements show a clear
evidence of an orbital reconstruction at the interface, ascribed to the
hybridization between the Cu 3d3z2-r2 and the Mn 3d3z2-r2 orbitals via
interface apical oxygen ions. Such a mechanism localizes holes at the
interfaces, thus preventing charge transfer to the CaCuO2 block. Some charge
(holes) transfer occurs toward the La0.7Sr0.3MnO3 block in strongly oxidized
superlattices, contributing to the suppression of the magnetotransport
properties.Comment: 20 pages, 6 figure
Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices
The magnetic and electronic modifications induced at the interfaces in
(SrMnO)/(LaMnO) superlattices have been investigated
by linear and circular magnetic dichroism in the Mn L x-ray absorption
spectra. Together with theoretical calculations, our data demonstrate that the
charge redistribution across interfaces favors in-plane ferromagnetic (FM)
order and orbital occupation, in agreement with the
average strain. Far from interfaces, inside LaMnO, electron localization
and local strain favor antiferromagnetism (AFM) and
orbital occupation. For the high density of interfacial planes ultimately
leads to dominant FM order forcing the residual AFM phase to be in-plane too,
while for the FM layers are separated by AFM regions having
out-of-plane spin orientation.Comment: accepted for publication as a Rapid Communication in Physical Review
Multiple double-exchange mechanism by Mn-doping in manganite compounds
Double-exchange mechanisms in REAEMnO manganites (where
RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies
on the strong exchange interaction between two Mn and Mn ions
through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions
has ever been considered "silent" with respect to the DE conducting mechanisms.
Here we show that a new path for DE-mechanism is indeed possible by partially
replacing the RE-AE elements by Mn-ions, in La-deficient
LaMnO thin films. X-ray absorption spectroscopy demonstrated
the relevant presence of Mn ions, which is unambiguously proved to be
substituted at La-site by Resonant Inelastic X-ray Scattering. Mn is
proved to be directly correlated to the enhanced magneto-transport properties
because of an additional hopping mechanism trough interfiling Mn-ions,
theoretically confirmed by calculations within the effective single band model.
The very idea to use Mn both as a doping element and an ions
electronically involved in the conduction mechanism, has never been foreseen,
revealing a new phenomena in transport properties of manganites. More
important, such a strategy might be also pursed in other strongly correlated
materials.Comment: 6 pages, 5 figure
Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films
Electronic properties of transition metal oxides at interfaces are influenced
by strain, electric polarization and oxygen diffusion. Linear dichroism (LD)
x-ray absorption, diffraction, transport and magnetization on thin
La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface
effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at
the interface, suppressing the double exchange mechanism. This surface orbital
reconstruction is opposite of that favored by residual strain and independent
of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure
Organic film thickness influence on the bias stress instability in Sexithiophene Field Effect Transistors
In this paper, the dynamics of bias stress phenomenon in Sexithiophene (T6)
Field Effect Transistors (FETs) has been investigated. T6 FETs have been
fabricated by vacuum depositing films with thickness from 10 nm to 130 nm on
Si/SiO2 substrates. After the T6 film structural analysis by X-Ray diffraction
and the FET electrical investigation focused on carrier mobility evaluation,
bias stress instability parameters have been estimated and discussed in the
context of existing models. By increasing the film thickness, a clear
correlation between the stress parameters and the structural properties of the
organic layer has been highlighted. Conversely, the mobility values result
almost thickness independent
Optimized fabrication of high quality La0.67Sr0.33MnO3 thin films considering all essential characteristics
In this article, an overview of the fabrication and properties of high
quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high quality LSMO film
combines a smooth surface morphology with a large magnetization and a small
residual resistivity, while avoiding precipitates and surface segregation. In
literature, typically only a few of these issues are adressed. We therefore
present a thorough characterization of our films, which were grown by pulsed
laser deposition. The films were characterized with reflection high energy
electron diffraction, atomic force microscopy, x-ray diffraction, magnetization
and transport measurements, x-ray photoelectron spectroscopy and scanning
transmission electron microscopy. The films have a saturation magnetization of
4.0 {\mu}B/Mn, a Curie temperature of 350 K and a residual resistivity of 60
{\mu}{\Omega}cm. These results indicate that high quality films, combining both
large magnetization and small residual resistivity, were realized. A comparison
between different samples presented in literature shows that focussing on a
single property is insufficient for the optimization of the deposition process.
For high quality films, all properties have to be adressed. For LSMO devices,
the thin film quality is crucial for the device performance. Therefore, this
research is important for the application of LSMO in devices.Comment: Accepted for publication in Journal of Physics D - Applied Physic
Galaxy populations in the Antlia cluster. I. Photometric properties of early-type galaxies
We present the first colour-magnitude relation (CMR) of early-type galaxies
in the central region of the Antlia cluster, obtained from CCD wide-field
photometry in the Washington photometric system. Integrated (C -T1) colours, T1
magnitudes, and effective radii have been measured for 93 galaxies (i.e. the
largest galaxies sample in the Washington system till now) from the FS90
catalogue (Ferguson & Sandage 1990). Membership of 37 objects can be confirmed
through new radial velocities and data collected from the literature. The
resulting colour-magnitude diagram shows that early-type FS90 galaxies that are
spectroscopically confirmed Antlia members or that were considered as definite
members by FS90, follow a well defined CMR (sigma_(C -T1) ~ 0.07 mag) that
spans 9 magnitudes in brightness with no apparent change of slope. This
relation is very tight for the whole magnitude range but S0 galaxies show a
larger dispersion, apparently due to a separation of ellipticals and S0s.
Antlia displays a slope of -13.6 in a T1 vs. (C -T1) diagram, in agreement with
results for clusters like Fornax, Virgo, Perseus and Coma, which are
dynamically different to Antlia. This fact might indicate that the build up of
the CMR in cluster of galaxies is more related to galaxies internal processes
than to the influence of the environment. Interpreting the CMR as a
luminosity-metallicity relation of old stellar systems, the metallicities of
the Antlia galaxies define a global relation down to Mv ~ -13. We also find,
for early-type dwarfs, no clear relation between luminosity and effective
radius, indicating a nearly constant mean effective radius of ~ 1 kpc. This
value is also found in several samples of dwarf galaxies in Virgo and Coma.Comment: 13 pages, 6 figures. Accepted for publication in MNRA
- …