17 research outputs found

    An Assessment of Stratospheric Intrusions in Italian Mountain Regions Using STEFLUX

    Get PDF
    The Mediterranean basin is considered a global hot-spot region for climate change and air quality, especially concerning summer-time ozone (O3). Previous investigations indicated that the Mediterranean basin is a preferred region for stratosphere-to-troposphere exchange (STE) and deep stratospheric intrusion (SI) events. The Lagrangian tool STEFLUX, based on a STE climatology that uses the ERA Interim data, was hereby used to diagnose the occurrence of deep SI events in four mountain regions over the Italian peninsula, spanning from the Alpine region to the southern Apennines. By using near-surface O3 and relative humidity (RH) observations at three high-mountain observatories, we investigated the performance of STEFLUX in detecting deep SI events. Both experimental and STEFLUX detections agreed in describing the seasonal cycle of SI occurrence. Moreover, STEFLUX showed skills in detecting "long-lasting" SI events, especially in the Alps and in the northern Apennines. By using STEFLUX, we found positive tendencies in the SI occurrence during 1979–2017. However, in contrast to similar studies carried out in the Alpine region, the negative long-term (1996–2016) trend of O3 in the northern Apennines did not appear to be related to the SI's variability

    Wildfires impact on surface nitrogen oxides and ozone in Central Italy

    Get PDF
    AbstractA summer campaign in Central Italy was carried out to study the impact of fire emissions on the mixing ratios of surface trace gases. Observations with a selective and sensitive instrument that uses the laser induced fluorescence technique for direct measurements of nitrogen dioxide (NO2), show a significant increase of NO2 mixing ratios, in the evening, when a fire plume reached the observations site. The increase of NO2 mixing ratios is well correlated (R=0.83) with that of particulate matter (PM), which is one of the primary product of forest and grassland fires. The tight correlation between NO2 and PM is used to improve the performance of a statistical regression model to simulate the observed O3, and to highlight the effect of fire emissions on the O3 mixing ratios. The statistical regression model of O3 improves in terms of performance (bias reduction of 77% and agreement enhancement of 10% for slope and correlation coefficient) when PM2.5 is included as additional input and proxy of the fire emissions among the usual input parameters (meteorological data and NO2 mixing ratios). A case study, comparing observed and modeled O3 in different days (with and without fire plume), suggests an impact of fire emissions on the O3 mixing ratios of about 10%

    Genotoxicity Response of Fibroblast Cells and Human Epithelial Adenocarcinoma In Vitro Model Exposed to Bare and Ozone-Treated Silica Microparticles

    Get PDF
    Indoor air pollutants (IAP), which can pose a serious risk to human health, include biological pollutants, nitric oxide (NO), nitrogen dioxide (NO2), volatile organic compounds (VOC), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), silica, metals, radon, and particulate matter (PM). The aim of our work is to conduct a multidisciplinary study of fine silica particles (<2.5 mu m) in the presence or absence of ozone (O-3), and evaluate their potential cytotoxicity using MTS, micronucleus, and the comet test in two cell lines. We analyzed A549 (human basal alveolar epithelial cell adenocarcinoma) and Hs27 (human normal fibroblasts) exposed to dynamic conditions by an IRC simulator under ozone flow (120 ppb) and in the presence of silica particles (40 mu g/h). The viability of A549 and Hs27 cells at 48 and 72 h of exposure to silica or silica/ozone decreases, except at 72 h in Hs27 treated with silica/ozone. The micronucleus and comet tests showed a significant increase in the number of micronuclei and the % of DNA in the queue, compared to the control, in both lines in all treatments, even if in different cell times/types. We found that silica alone or with more O-3 causes more pronounced genotoxic effects in A549 tumor cells than in normal Hs27 fibroblasts

    Deriving a speciated atmospheric nitrogen budget at Auchencorth Moss, a background site in south east Scotland

    Get PDF
    Abstract relates to a poster presentation at the European Geosciences Union General Assembly 2015

    Increasing the maturity of measurements of essential climate variables (ECVs) at Italian atmospheric WMO/GAW observatories by implementing automated data elaboration chains

    Get PDF
    In the framework of the National Project of Interest NextData, we developed automatic procedures for the flagging and formatting of trace gases, atmospheric aerosols and meteorological data to be submitted to the World Data Centers (WDCs) of the Global Atmosphere Watch program of the World Meteorological Organization (WMO/GAW). In particular, the atmospheric Essential Climate Variables (ECVs) covered in this work are observations of near-surface trace gas concentrations, aerosol properties and meteorological variables, which are under the umbrella of the World Data Center for Greenhouse Gases (WDCGG), the World Data Center for Reactive Gases, and the World Data Center for Aerosol (WDCRG and WDCA). We developed an overarching processing chain to create a number of data products (data files and reports) starting from the raw data, finally contributing to increase the maturity of these measurements. To this aim, we implemented specific routines for data filtering, flagging, format harmonization, and creation of data products, useful for detecting instrumental problems, particular atmospheric events and quick data dissemination towards stakeholders or citizens. Currently, the automatic data processing is active for a subset of ECVs at 5 measurement sites in Italy. The system represents a valuable tool to facilitate data originators towards a more efficient data production. Our effort is expected to accelerate the process of data submission to WMO/GAW or to other reference data centers or repositories. Moreover, the adoption of automatic procedures for data flagging and data correction allows to keep track of the process that led to the final validated data, and makes data evaluation and revisions more efficient by improving the traceability of the data production process

    Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique

    No full text
    In this work, the results on the detection and identification of Bacillus thuringiensis (Bt) cells by using surface-enhanced Raman spectroscopy (SERS) are presented. Bt has been chosen as a harmless surrogate of the pathogen Bacillus anthracis (Ba) responsible for the deadly Anthrax disease, because of their genetic similarities. Drops of 200 μL of Bt suspensions, with concentrations 102 CFU/mL, 104 CFU/mL, 106 CFU/mL, were deposited on a SERS chip and sampled after water evaporation. To minimize the contribution to the SERS data given by naturally occurring interferents present in a real scenario, the SERS chip was functionalized with specific phage receptors BtCS33, that bind Bt (or Ba) cells to the SERS surface and allow to rinse the chip removing unwanted contaminants. Different chemometric approaches were applied to the SERS data to classify spectra from Bt-contaminated and uncontaminated areas of the chip: Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and Data Driven Soft Independent Modeling of Class Analogy (DD-SIMCA). The first two was tested and trained by using data from both contaminated and un-contaminated chips, the last was trained by using data from un-contaminated chips only and tested with all the available data. All of them were able to correctly classify the SERS spectra with great accuracy, the last being suitable for an automated recognition procedure

    Analysis of the Influencing Factors and Sources of Brown Carbon Light Absorption in a Typical Megacity of the Yangtze River Delta, China

    No full text
    Brown carbon (BrC) is a new term for organic aerosol (OA) with strong absorption ability from the visible to ultraviolet (UV) wavelengths, which plays a vital role in atmospheric visibility and climate change. Herein, we report field measurements from 1 March 2020 to 28 February 2021, sampled at urban Suzhou, Yangtze River Delta (YRD), China, to investigate the optical properties and sources of BrC. By analyzing the seasonal characteristics of the absorption of BrC at 370 nm (babs370), babs370 was found to be the highest (9.0 ± 7.2 Mm−1) in winter and the lowest (5.1 ± 3.3 Mm−1) in summer, respectively. The absorption Ångström exponent (AAE) value of BrC in winter was 1.22 ± 0.05, followed by 1.21 ± 0.05, 1.20 ± 0.05, and 1.19 ± 0.05 for fall, spring, and summer, respectively. The mass absorption cross-section (MAC) of secondary organic carbon (SOC) was 3.3 ± 0.2 m2g−1 in spring, 2.9 ± 0.1 m2g−1 in summer, 4.3 ± 0.1 m2g−1 in fall, and 2.8 ± 0.2 m2g−1 in winter, significantly lower than that of primary organic carbon (POC) at 370 nm, suggesting the aging process could weaken the light absorption of BrC. Five different BrC factors were identified by the positive matrix factorization (PMF) analysis, including biomass-burning-related, vehicle-related, sulfate-related, nitrate-related, and dust-related factors, which on average account for 7.4%, 73.4%, 11.9%, 1.9%, and 5.4% of babs370, respectively. Potential Source Contribution Factor (PSCF) analysis showed that those high babs370 periods were mainly contributed by air mass from the south. Moreover, for the influence degree of the potential source areas, the sequence was winter > spring > fall > summer. Our results improve the understanding of BrC in an important industrial city in YRD, which could reduce the uncertainty of the prediction of its climate effect in this region

    Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells

    No full text
    <div><p>Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O<sub>3</sub> while at 48 hours and 72 hours O<sub>3</sub> treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O<sub>3</sub> provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.</p></div

    CBPI index in A549 and Hs27 cells 120 ppb O<sub>3</sub> treated.

    No full text
    <p>Cytokinesis Block Proliferation Index (CBPI) in human cells lines A549 and Hs27 treated with 120 ppb O<sub>3</sub> at 48, 72 hrs. The CBPI indicates the average number of nuclei per cell, and may be used to calculate cell proliferation. CBPI was calculated as follows: (1 × N1) + (2 × N2) + (3 × (N3 + N4))/N where N1–N4 represent the number of cells with 1–4 nuclei, respectively, and N is the total number of cells scored. The results are compared to the negative control and are the means ± ES. * <i>p</i> < 0.05.</p

    RI Replication Index and micronucleus induction in A549 and Hs27.

    No full text
    <p>Induction of cytotoxicity according to RI and genotoxicity according to micronuclei test in A549 cells (panels A and C), and Hs27 cells (panels B and D) in both the condition (control and ozone exposure). Significance values determined according to the t-Student: * = p<0,05; ** = p<0,005; error bars represent the standard error of the mean.</p
    corecore