264 research outputs found
Food Allergen Analysis: Detection, Quantification and Validation by Mass Spectrometry
Worldwide, food-allergy-related diseases are a significant health problem. While the food industry works on managing cross-contaminations and while clinicians deal with treatment, laboratories must develop efficient analytical methods to ensure detection of hidden allergens that can cause severe adverse reactions. Over the past few years, huge progress has been made in mass spectrometry for the analysis of allergens in incurred and processed foodstuffs, especially as regards sample preparation and enrichment (solid phase extraction, protein precipitation and ultrafiltration). These achievements make it possible to meet the Allergen Bureau\u27s Voluntary Incidental Trace Allergen Labelling (VITAL) sensitivity criteria. The present chapter details the different steps in the development of mass spectrometry methods, from peptide selection to the validation of qualitative and quantitative methods. The chapter focuses mainly on studies performed with incurred and processed food samples to ensure the applicability of the methods to allergen detection in real food products
Mitochondrial Uncoupling:A Key Controller of Biological Processes in Physiology and Diseases
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.SCOPUS: re.jinfo:eu-repo/semantics/publishe
Endogenous TOM20 Proximity Labeling:A Swiss-Knife for the Study of Mitochondrial Proteins in Human Cells
Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life
Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples
International audienceThis work is part of a program that aims at studying the burr wood of thuja (Tetraclinis articulata). The goal of this work is to identify material symmetries of burr wood to improve its machining. To have a sufficient number of data and to limit the variability between samples, an ultrasonic experimental device, in direct contact on spherical samples, has been developed and improved. Until now, the geometry used in direct contact ultrasonic methods was either cubic or polyhedral allowing to obtain, on the same sample, 3 (cube) to 13 (polyhedron) measurements or usable data. By choosing a reasonable angular gap, the spherical geometry allows the ultrasonic velocity to be measured in 133 different directions on the same specimen. We present here the adaptation and development of the ultrasonic experimental device and results obtained on (i) aluminum chosen as a reference material, (ii) beech wood and (iii) burr wood of thuja
- …