37 research outputs found

    Neutrino oscillation studies with IceCube-DeepCore

    Get PDF
    AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed

    The polarized image of a synchrotron-emitting ring of gas orbiting a black hole

    Get PDF
    High Energy Astrophysic

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    InstrumentationHigh Energy Astrophysic

    The variability of the black hole image in M87 at the dynamical timescale

    Get PDF
    The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u–v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.https://iopscience.iop.org/article/10.3847/1538-4357/ac332e/pdfPublished versio

    Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

    Get PDF
    InstrumentationLarge scale structure and cosmolog

    Resolving the inner parsec of the blazar J1924-2914 with the event horizon telescope

    Get PDF
    Galaxie

    Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign

    Get PDF
    High Energy AstrophysicsInstrumentatio

    Glucose-induced hyperaccumulation of cAMP and absence of glucose repression in yeast strains with induced activity of cAMP-dependent protein kinase.

    No full text
    Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-mediated cyclic AMP (cAMP) signal that induces a protein phosphorylation cascade. In yeast mutants (tpk1w1, tpk2w1, and tpk3w1) containing reduced activity of cAMP-dependent protein kinase, fermentable sugars, as opposed to nonfermentable carbon sources, induced a permanent hyperaccumulation of cAMP. This finding confirms previous conclusions that fermentable sugars are specific stimulators of cAMP synthesis in yeast cells. Despite the huge cAMP levels present in these mutants, deletion of the gene (BCY1) coding for the regulatory subunit of cAMP-dependent protein kinase severely reduced hyperaccumulation of cAMP. Glucose-induced hyperaccumulation of cAMP was also observed in exponential-phase glucose-grown cells of the tpklw1 and tpk2w1 strains but not the tpk3w1 strain even though addition of glucose to glucose-repressed wild-type cells did not induce a cAMP signal. Investigation of mitochondrial respiration by in vivo 31P nuclear magnetic resonance spectroscopy showed the tpk1w1 and tpk2w1 strains, to be defective in glucose repression. These results are consistent with the idea that the signal transmission pathway from glucose to adenyl cyclase contains a glucose-repressible protein. They also show that a certain level of cAMP-dependent protein phosphorylation is required for glucose repression. Investigation of the glucose-induced cAMP signal and glucose-induced activation of trehalase in derepressed cells of strains containing only one of the wild-type TPK genes indicates that the transient nature of the cAMP signal is due to feedback inhibition by cAMP-dependent protein kinase
    corecore