37 research outputs found

    Supersonic minimum length nozzle design for dense gases

    Get PDF
    Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design for these gases is complicated by their nonclassical behavior in the transonic flow regime. In this paper a method of characteristics (MOC) is developed for two-dimensional (planar) and, primarily, axisymmetric flow of a van der Waals gas. Using a straight aortic line assumption, a centered expansion is used to generate an inviscid wall contour of minimum length. The van der Waals results are compared to previous perfect gas results to show the real gas effects on the flow properties and inviscid wall contours

    Intercomparison of Unmanned Aircraftborne and Mobile Mesonet Atmospheric Sensors

    Get PDF
    Results are presented from an intercomparison of temperature, humidity, and wind velocity sensors of the Tempest unmanned aircraft system (UAS) and the National Severe Storms Laboratory (NSSL) mobile mesonet (NSSL-MM). Contemporaneous evaluation of sensor performance was facilitated by mounting the Tempest wing with attached sensors to the NSSL-MM instrument rack such that the Tempest and NSSL-MM sensors could collect observations within a nearly identical airstream. This intercomparison was complemented by wind tunnel simulations designed to evaluate the impact of the mobile mesonet vehicle on the observed wind velocity. The intercomparison revealed strong correspondence between the temperature and relative humidity (RH) data collected by the Tempest and the NSSL-MM with differences generally within sensor accuracies. Larger RH differences were noted in the presence of heavy precipitation; however, despite the exposure of the Tempest temperature and humidity sensor to the airstream, there was no evidence of wet bulbing within precipitation. Wind tunnel simulations revealed that the simulated winds at the location of the NSSL-MM wind monitor were ~4% larger than the expected winds due to the acceleration of the flow over the vehicle. Simulated vertical velocity exceeded 1 ms-1 for tunnel inlet speeds typical of a vehicle moving at highway speeds. However, the theoretical noncosine reduction in winds that should result from the impact of vertical velocity on the laterally mounted wind monitor was found to be negligible across the simulations. Comparison of the simulated and observed results indicates a close correspondence, provided the crosswind component of the flow is small

    Observing the Central Arctic Atmosphere and Surface with University of Colorado uncrewed aircraft systems

    Get PDF
    AbstractOver a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature, pressure, humidity and winds between the surface and 1 km, as well as to document ice properties, including albedo, melt pond fraction, and open water amounts. The atmospheric state flights were primarily conducted by the DataHawk2 sUAS, which was operated primarily in a profiling manner, while the surface property flights were conducted using the HELiX sUAS, which flew grid patterns, profiles, and hover flights. In total, over 120 flights were conducted and over 48 flight hours of data were collected, sampling conditions that included temperatures as low as −35 °C and as warm as 15 °C, spanning the summer melt season.</jats:p

    Data Generated during the 2018 LAPSE-RATE Campaign: An Introduction and Overview

    Get PDF
    Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado\u27s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020)

    On the Use of Unmanned Aircraft for Sampling Mesoscale Phenomena in the Preconvective Boundary Layer

    Get PDF
    The potential value of small unmanned aircraft systems (UAS) for monitoring the preconvective environment and providing useful information in real time to weather forecasters for evaluation at a National Weather Service (NWS) Forecast Office are addressed. The general goal was to demonstrate whether a combination of fixed-wing and rotary-wing UAS can provide detailed, accurate, and useful measurements of the boundary layer important for determining the potential for convection initiation (CI). Two field operations were held: a validation study in which the UAS data were compared with collocated measurements made by mobile rawinsondes and ground-based remote sensing systems and a real-time experiment held to evaluate the potential value of the UAS observations in an operationally relevant environment. Vertical profile measurements were made by the rotary-wing UAS at two mesonet sites every 30 min up to 763 m (2500 ft) AGL in coordination with fixed-wing UAS transects between the sites. The results showed the ability of the fixed-wing UAS to detect significant spatial gradients in temperature, moisture, and winds. Although neither of two different types of rotary-wing UAS measurements were able to strictly meet the requirements for sensor accuracy, one of the systems came very close to doing so. UAS sensor accuracy, methods for retrieving the winds, and challenges in assessing the representativeness of the observations are highlighted. Interesting mesoscale phenomena relevant to CI forecasting needs are revealed by the UAS. Issues needing to be overcome for UAS to ever become a NOAA operational observing system are discussed
    corecore