53 research outputs found

    Lepton flavour violation in supersymmetric models with seesaw mechanism

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 24-05-200

    Exotic <i>μ τ jj</i> events from heavy ISS neutrinos at the LHC

    Get PDF
    In this letter we study new relevant phenomenological consequences of the right-handed heavy neutrinos with masses at the O(1)TeV energy scale, working within the context of the Inverse Seesaw Model that includes three pairs of quasi-degenerate pseudo-Dirac heavy neutrinos. We propose a new exotic signal of these heavy neutrinos at the CERN Large Hadron Collider containing a muon, a tau lepton, and two jets in the final state, which is based on the interesting fact that this model can incorporate large Lepton Flavor Violation for specific choices of the relevant parameters, particularly, the neutrino Yukawa couplings. We will show here that an observable number of μτ. jj exotic events, without missing energy, can be produced at this ongoing run of the LHC.Instituto de Física La Plat

    Slim SUSY

    Get PDF
    he new SM-like Higgs boson discovered recently at the LHC, with mass mh≃125GeV, as well as the direct LHC bounds on the mass of superpartners, which are entering into the TeV range, suggest that the minimal surviving supersymmetric extension of the SM (MSSM), should be characterized by a heavy SUSY-breaking scale. Several variants of the MSSM have been proposed to account for this result, which vary according to the accepted degree of fine-tuning. We propose an alternative scenario here, Slim SUSY, which contains sfermions with multi-TeV masses and gauginos/higgsinos near the EW scale, but it includes the heavy MSSM Higgs bosons (H0, A0, H±) near the EW scale too. We discuss first the formulation and constraints of the Slim SUSY scenario, and then identify distinctive heavy Higgs signals that could be searched at the LHC, within scenarios with the minimal number of superpartners with masses near the EW scale.Instituto de Física La PlataConsejo Nacional de Investigaciones Científicas y Técnica

    Slim SUSY

    Get PDF
    he new SM-like Higgs boson discovered recently at the LHC, with mass mh≃125GeV, as well as the direct LHC bounds on the mass of superpartners, which are entering into the TeV range, suggest that the minimal surviving supersymmetric extension of the SM (MSSM), should be characterized by a heavy SUSY-breaking scale. Several variants of the MSSM have been proposed to account for this result, which vary according to the accepted degree of fine-tuning. We propose an alternative scenario here, Slim SUSY, which contains sfermions with multi-TeV masses and gauginos/higgsinos near the EW scale, but it includes the heavy MSSM Higgs bosons (H0, A0, H±) near the EW scale too. We discuss first the formulation and constraints of the Slim SUSY scenario, and then identify distinctive heavy Higgs signals that could be searched at the LHC, within scenarios with the minimal number of superpartners with masses near the EW scale.Instituto de Física La PlataConsejo Nacional de Investigaciones Científicas y Técnica

    Towards a method to anticipate dark matter signals with deep learning at the LHC

    Get PDF
    We study several simplified dark matter (DM) models and their signatures at the LHC using neural networks. We focus on the usual monojet plus missing transverse energy channel, but to train the algorithms we organize the data in 2D histograms instead of event-by-event arrays. This results in a large performance boost to distinguish between standard model (SM) only and SM plus new physics signals. We use the kinematic monojet features as input data which allow us to describe families of models with a single data sample. We found that the neural network performance does not depend on the simulated number of background events if they are presented as a function of S/pB, for reasonably large B, where S and B are the number of signal and background events per histogram, respectively. This provides flexibility to the method, since testing a particular model in that case only requires knowing the new physics monojet cross section. Furthermore, we also discuss the network performance under incorrect assumptions about the true DM nature. Finally, we propose multimodel classifiers to search and identify new signals in a more general way, for the next LHC runThe work of EA is partially supported by the “Atracción de Talento” program (Modalidad 1) of the Comunidad de Madrid (Spain) under the grant number 2019-T1/TIC-14019 and by the Spanish Research Agency (Agencia Estatal de Investigación) through the grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597. This work has been also partially supported by CONICET and ANPCyT under projects PICT 2016-0164, PICT 2017-0802, PICT 2017-2751, PICT 2017- 2765, and PICT 2018-0368

    Potential discovery of staus through heavy Higgs boson decays at the LHC

    Get PDF
    In this work we present a new search strategy for the discovery of staus at the LHC in the context of the minimal supersymmetric standard model. The search profits from the large s-channel b-quark annihilation production of the heavy CP-even and CP-odd Higgs bosons (H/A) which can be attained in regions of tan β ≫ 1 that avoid the stringent H/A → τ⁺ τ⁻ searches via decays into stau pairs. We also focus on regions where the staus branching ratios are dominated by the decays into a tau lepton and the lightest neutralino. Thus the experimental signature consists of final states made up of a tau-lepton pair plus large missing transverse energy. We take advantage of the large stau-pair production cross sections via heavy Higgs boson decays, which are between one or two orders of magnitude larger than the usual electroweak production cross sections for staus. A set of basic cuts allow us to obtain significances of the signal over the SM backgrounds at the discovery level (5 standard deviations) in the next LHC run with a center-of-mass energy of 14 TeV and a total integrated luminosity of only 100 fb-1.Facultad de Ciencias ExactasInstituto de Física La Plat

    Interpretation of LHC excesses in ditop and ditau channels as a 400-GeV pseudoscalar resonance

    Get PDF
    Since the discovery in 2012 of the Higgs boson at the LHC, as the last missing piece of the Standard Model of particle physics, any hint of new physics has been intensively searched for, with no confirmation to date. There are however slight deviations from the SM that are worth investigating. The CMS collaboration has reported, in a search for heavy resonances decaying in tt¯ with a 13-TeV center-of-mass energy and a luminosity of 35.9 fb−1, deviations from the SM predictions at the 3.5σ level locally (1.9σ after the look-elsewhere effect). In addition, in the ditau final state search performed by the ATLAS collaboration at s = 13 TeV and L = 139 fb−1, deviations from the SM at the 2σ level have been also observed. Interestingly, both slight excesses are compatible with a new pseudoscalar boson with a mass around 400 GeV that couples at least to fermions of the third generation and gluons. Starting from a purely phenomenological perspective, we inspect the possibility that a 400-GeV pseudoscalar can account for these deviations and at the same time satisfy the constraints on the rest of the channels that it gives contributions to and that are analyzed by the ATLAS and CMS experiments. After obtaining the range of effective couplings compatible with all experimental measurements, we study the gauge invariant UV completions that can give rise to this type of pseudoscalar resonance, which can be accommodated in an SO(6)/SO(5) model with consistency at the 1σ level and in a SO(5) × U(1)P × U(1)X/SO(4) × U(1)X at the 2σ level, while exceedingly large quartic couplings would be necessary to account for it in a general two Higgs doublet model.Fil: Arganda Carreras, Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Díaz, Daniel A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Medina, Anibal Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentin

    Analysis of the h, H, A → τμ decays induced from SUSY loops within the Mass Insertion Approximation

    Get PDF
    In this paper we study the lepton favor violating decay channels of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model into a lepton and an anti-lepton of different flavor. We work in the context of the most general flavor mixing scenario in the slepton sector, in contrast to the minimal flavor violation assumption more frequently used. Our analytic computation is a one-loop diagrammatic one, but in contrast to the full one-loop computation which is usually referred to the physical slepton mass basis, we use here instead the Mass Insertion Approximation (MIA) which uses the electroweak interaction slepton basis and treats perturbatively the mass insertions changing slepton flavor. By performing an expansion in powers of the external momenta in the relevant form factors, we will be able to separate explicitly in the analytic results the leading non-decoupling (constant at asymptotically large sparticle masses) and the next to leading decoupling contributions (decreasing with the sparticle masses). Our final aim is to provide a set of simple analytic formulas for the form factors and the associated effective vertices, that we think may be very useful for future phenomenological studies of the lepton flavor violating Higgs boson decays, and for their comparison with data. The accuracy of the numerical results obtained with the MIA are also analyzed and discussed here in comparison with the full one-loop results. Our most optimistic numerical estimates for the three neutral Higgs boson decays channels into τ and μ leptons, searching for their maximum rates that are allowed by present constraints from τ → μγ data and beyond Standard Model Higgs boson searches at the LHC, are also included.Facultad de Ciencias ExactasInstituto de Física La Plat

    Erratum to: Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC

    Get PDF
    Corrección del artículo citado (ver "Documentos relacionados").Instituto de Física La Plat

    Novel Higgsino dark matter signal interpretation at the LHC

    Get PDF
    In the LHC searches for gluinos it is usually assumed that they decay predominantly into the lightest neutralino plus jets. In this work we perform a proof-of-concept collider analysis of a novel supersymmetric signal in which gluinos decay mostly into jets and the bino-like neutralino (χ 30), which in turn decays into the lightest Higgsino-like neutralino (χ 10), considered the dark matter candidate, together with the SM-like Higgs boson (h). This new physics signal then consists of an LHC final state made up by four light jets, four b-jets, and a large amount of missing transverse energy. We identify tt¯, V+jets (V=W, Z), and tt¯+X (X=W, Z, γ∗, h) productions as the most problematic backgrounds, and develop a search strategy for the high luminosity phase of the LHC, reaching signal significances at the evidence level for a luminosity of 1000 fb-1. The prospects for a luminosity of 3000 fb-1 are even more promising, with discovery-level significances.Fil: Arganda Carreras, Ernesto. Departamento de Fisica Teorica ; Facultad de Ciencias ; Universidad Autonoma de Madrid; . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Delgado de la Rosa, Juan Antonio. University of Notre Dame; Estados UnidosFil: Morales, Roberto Anibal. Departamento de Fisica Teorica ; Facultad de Ciencias ; Universidad Autonoma de Madrid; . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Quirós, Mariano. Institut de Física d’Altes Energies; Españ
    corecore