86 research outputs found

    Cloud boundary height measurements using lidar and radar

    Full text link
    Using only lidar or radar an accurate cloud boundary height estimate is often not possible. The combination of lidar and radar can give a reliable cloud boundary estimate in a much broader range of cases. However, also this combination with standard methods still can not measure the cloud boundaries in all cases. This will be illustrated with data from the Clouds and Radiation measurement campaigns, CLARA. Rain is a problem: the radar has problems to measure the small cloud droplets in the presence of raindrops. Similarly, few large particles below cloud base can obscure the cloud base in radar measurements. And the radar reflectivity can be very low at the cloud base of water clouds or in large regions of ice clouds, due to small particles. Multiple cloud layers and clouds with specular reflections can pose problems for lidar. More advanced measurement techniques are suggested to solve these problems. An angle scanning lidar can, for example, detect specular reflections, while using information from the radars Doppler velocity spectrum may help to detect clouds during rain.Comment: Reviewed conference contributio

    EARLINET: towards an advanced sustainable European aerosol lidar network

    Get PDF
    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite community, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observing system.Peer ReviewedPostprint (published version

    EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds

    Get PDF
    The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS, i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from ground-based networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https://sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.Peer ReviewedArticle escrit per 46 autors/es: Hugues Brenot Nicolas Theys Lieven Clarisse Jeroen van Gent Daniel Hurtmans Sophie Vandenbussche Nikolaos Papagiannopoulos Lucia Mona Timo Virtanen Andreas Uppstu Mikhail Sofiev Luca Bugliaro Margarita Vázquez-Navarro Pascal Hedelt Michelle Maree Parks Sara Barsotti Mauro Coltelli William Moreland Simona Scollo Giuseppe Salerno Delia Arnold-Arias Marcus Hirtl Tuomas Peltonen Juhani Lahtinen Klaus Sievers Florian Lipok Rolf Rüfenacht Alexander Haefele Maxime Hervo Saskia Wagenaar Wim Som de Cerff Jos de Laat Arnoud Apituley Piet Stammes Quentin Laffineur Andy Delcloo Robertson Lennart Carl-Herbert Rokitansky Arturo Vargas Markus Kerschbaum Christian Resch Raimund Zopp Matthieu Plu 1 Vincent-Henri Peuch Michel van Roozendael Gerhard WotawaPostprint (author's final draft

    An automatic aerosol classification for earlinet: application and results

    Get PDF
    Aerosol typing is essential for understanding the impact of the different aerosol sources on climate, weather system and air quality. An aerosol classification method for EARLINET (European Aerosol Research Lidar Network) measurements is introduced which makes use the Mahalanobis distance classifier. The performance of the automatic classification is tested against manually classified EARLINET data. Results of the application of the method to an extensive aerosol dataset will be presented. © The Authors, published by EDP Sciences, 2018.Peer ReviewedPostprint (published version

    The European aerosol research lidar network (EARLINET): an overview

    Get PDF
    The European Aerosol Research LIdar NETwork (EARLINET) is the first aerosol lidar network on a continental scale with the main goal to provide a comprehensive, quantitative, and statistically significant database for the aerosol distribution over Europe. Next, we present EARLINET along with the main network activities.Peer ReviewedPostprint (published version

    Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

    Get PDF
    The financial support by the European Union's Horizon 2020 research and innovation programme (ACTRIS-2, grant agreement no. 654109) is gratefully acknowledged. The background of LIRIC algorithm and software was developed under the ACTRIS Research Infrastructure project, grant agreement no. 262254, within the European Union Seventh Framework Programme, which financial support is gratefully acknowledged.r I. Binietoglou received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under the grant agreement no. 289923 - ITARS.This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.European Union (EU) 654109ACTRIS Research Infrastructure project within the European Union 262254European Union (EU) 289923 - ITAR

    Representativeness of aerosol measurements: EARLINET-CALIPSO correlative study

    No full text
    The high variability of tropospheric aerosols, both in space and time, is the main cause of the high uncertainty about radiative forcing related to tropospheric aerosols and their interaction with clouds. Because of the lack of high resolution aerosol global vertical profiles, the vertical mixing has not been considered so far in studies of spatial and temporal variability. The CALIPSO mission provides the first opportunity to investigate the 4-D aerosol and cloud fields in detail. However, because of the CALIOP small footprint and the revisit time of 16 days, correlative ground-based lidar observations are necessary in order to investigate the representativeness of these satellite observations. EARLINET, the European Aerosol Research Lidar Network, started correlative measurements for CALIPSO in June 2006, right after the CALIPSO launch. An integrated study of CALIPSO and EARLINET correlative measurements opens new possibilities for spatial (both horizontal and vertical) and temporal representativeness investigation of polar-orbit satellite measurements also in terms of revisit time.Postprint (published version
    • …
    corecore