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ABSTRACT 

Aerosol typing is essential for understanding the 
impact of the different aerosol sources on climate, 
weather system and air quality. An aerosol 
classification method for EARLINET (European 
Aerosol Research Lidar Network) measurements 
is introduced which makes use the Mahalanobis 
distance classifier. The performance of the 
automatic classification is tested against manually 
classified EARLINET data. Results of the 
application of the method to an extensive aerosol 
dataset will be presented. 

1 INTRODUCTION 

A thorough characterization of atmospheric 
aerosol particles is a key factor for accurate 
climate modeling [1]. The vertical profile of 
atmospheric particles is particularly important for 
the study of aerosol transport, and of the radiative 
forcing. Lidar measurements provide vertically 
resolved information on the aerosol distribution as 
well as on their optical properties. These 
parameters obtained can be used to classify into 
several aerosol types the various layers in the 
vertical. 

Automatic procedures for aerosol typing combine 

information and based on a set of pre-specified 
clusters, to determine the aerosol type. Different 
methods for retrieving aerosol types are applied 
depending on the lidar abilities. The spaceborne 
CALIOP (Cloud-Aerosol Lidar with Orthogonal 
Polarization) lidar utilizes a decision-tree that 
takes into account lidar-derived information but 
also external information on geographical 
location, surface type, and season [2]. In contrast 
[3] performed an objective, multi-dimensional 
analysis that exclusively makes use of airborne 
lidar measurements. Recently, a novel method 
was implemented using artificial neural networks 
based on optical data provided by multi-
wavelength Raman lidars measurements and 
advanced aerosol models in order to categorize 
aerosols [4]. 

EARLINET provides profiling data on a 
continental scale. The majority of the measuring 
stations operate multi-wavelength Raman lidars 
with the ability of linear particle depolarization 
ratio measurements. Based on these 
characteristics, EARLINET constitutes an 
excellent basis to distinguish different aerosol 
types.    

Here, we apply the Mahalanobis distance 
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classifier to EARLINET data. Previous to 
classifying a sensitivity analysis is performed to 
identify the intensive parameters most adequate 
for the classification. Examples of aerosol 
classification are presented, followed by a short 
discussion of these results.  

2 AUTOMATIC AEROSOL TYPE 

CLASSIFICATION 

The Mahalanobis-based classification found great 
applicability in aerosol studies. For instance, the 
algorithm developed by [3] is lidar stand-alone 
classification using four lidar intensive properties 
with the aim of classifying aerosols into eight 
types. A slightly different algorithm was 
introduced by [5] that incorporates uncertainties in 
the input properties. Recently, [6] used the same 
classifier to produce an aerosol classification 
scheme based on long term AERONET data. 

2.1 Methodology 

The aerosol classification is performed in two 
parts. First, specific samples of known aerosol 
types are used to make the model distributions, 
this is called the training phase. Second, a test 
dataset is classified by comparison with these 
models and it is called the testing phase. 

The calculated classifier assigns any given N-
dimensional point (x1, x2, …, xN) to the cluster 
that has minimum Mahalanobis distance (DM) 
from that point. A cluster is defined by its mean 
(μ1, μ2, …, μN) and its covariance matrix, S. In N 
dimensions, 

  (1) 

2.2 Training phase 

For the training phase we used EARLINET 
network-wide typing results already published in 
literature [7, 8] for a total of 64 samples. The 
clusters were chosen for the aerosol types to be 
physically meaningful and mark the sources. The 
7 selected aerosol types are: pure dust (D), 
polluted dust (PD = Dust + Smoke), mixed dust 
(MD = Dust + Marine), clean continental (CC), 
polluted continental (PC), smoke (S), and mixed 
marine (MM). However, aerosol types with 
similar characteristics were merged to identify 
whether this merging enhances the correct 

prediction. The S and PC were merged into a 
single category of small, absorbing particles. 
Further, the pure dust and the dust mixtures (PD 
and MD) were integrated into one. 

Next, we performed a sensitivity analysis to 
identify which wavelengths and intensive 
parameters provide the adequate information. In 
contrast to the work of [3] we used three aerosol 
intensive properties due to lack of depolarization 
ratio profiles: the lidar ratio (Saer), the 
backscatter/extinction related Ångström exponent 
(B-AE/E-AE), and the ratio of the lidar ratios 
(RSaer). Two statistical parameters that highlight 
the strength of the selected classifiers to 
discriminate between clusters are used: the total 
and the partial Wilk’s lambda (for more info 
check [7]). The lowest Wilk’s total lambda was 
found to be 0.03 for the set B-AE (IR, UV), Saer 
(VIS), and RSaer; the B-AE has the most weight in 
the classification. 

Figure 1 shows the characteristics of the training 
dataset in terms of the above mentioned intensive 
properties. The crosshairs indicate the standard 
deviation of the mean cluster properties. The 2-σ 
ellipses are calculated using the eigenvalues and 
eigenvectors of the covariance matrix. For the pair 
Saer and B-AE, the various aerosol clusters tend to 
populate specific areas of the graph whereas for 
the pairs Saer, RSaer and B-AE, RSaer no evident 
grouping is observed. It might be noted that the 
parameters do not give a good separation of the 
clusters, however, this is, of course, the benefit of 
using multivariate analysis. 

 
Figure 1 Pre-specified clusters delineated by two-

sigma ellipses. 
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3 RESULTS  

EARLINET data collected during the ACTRIS 
Summer 2012 campaign were chosen to test the 
automatic typing algorithm. The description of the 
aerosol type distribution over Europe during the 
campaign was obtained through a combined use 
of advanced lidar measurements, backward 
trajectory analyses and model outputs [9]. The test 
dataset comprises of 47 samples, 21 of which 
yield depolarization values.  

In Tab. 1, the agreement between the manual and 
automatic procedures is 64 %, the samples 
wrongly flagged are 34 %, and the remaining 2 % 
is not assigned due to the low confidence (DM < 
4.0 for 3 d.f.). The aerosol types that performed 
worse are the smoke and polluted continental 
categories owing to the similarities in the 
intensive properties. Given the noticeable 
signature of dust particles the agreement is limited 
to 54 % which can be assigned to the lack of 
depolarization measurements. 

In the light of these discrepancies, first, we 
introduce a combined smoke and polluted 
continental category, as already discussed in Sect. 
2.1, and the results are shown in the same table. 
The agreement increased by 13 %. Second, when 
dust is represented by a single cluster (the pre-
specified clusters are limited to four), the 
agreement reached 87 %.  

Table 1 Agreement in percentage of the automatic 
classification results with manually classified data  

# of clusters Correct Pred. Wrong Pred. 
7 64 % 36 % 
6 77 % 23 % 
4 87 % 13 % 
 

The current status of EARLINET does not allow 
incorporating the particle linear depolarization 
ratio (δaer) into the automatic typing scheme. 
Whereas, for [3] the depolarization showed to be a 
robust means to discriminate the various aerosol 
types. Therefore, we used literature values for 
particle linear depolarization ratio (Tab. 2) in 
order to implement this parameter into the 
automatic algorithm. Values within the aerosol 
type range were randomly assigned to each 
sample and the Wilk’s lambda distribution was 
calculated. Wilk’s total lambda is 0.01. For B-AE 

is 0.41, for Saer is 0.36, for RSaer is 0.48 and for δaer 
is 0.17. δaer for this dataset indicates that this 
variable has the most weight in the classification. 

Table 2 The range of the linear particle depolarization 
(δaer) ratio for each of the aerosol types along with the 

bibliographic reference. 

Type δaer References 
Dust 0.28-0.33 [10] 
Poll. Dust 0.12-0.23 [10] 
Mixed Dust 0.13-0.17 [10] 
Poll. Continent. 0.03-0.07 [11] 
Clean Continent 0.01-0.07 [2] 
Smoke 0.04-0.09 [11] 
Mixed Marine 0.01-0.05 [10] 
 

The Mahalanobis distance threshold, in this case, 
for the type inference is 4.3 (4 d.f.). Table 3 shows 
the agreement between the manual and the 
automatic procedures is 67 % (64 % without δaer). 
The agreement for the combined smoke and 
polluted continental types, now, becomes 86% (77 
% without δaer); whereas for the combined dust 
type is 81 % (87 % without δaer). It becomes 
evident that the depolarization ratio increases the 
ability for predicting correctly the aerosol type 
when considering 7 clusters and 6 clusters, while 
it performs worse in case of 4 clusters, however 
the prediction rate is rather high. 

Table 3 Agreement in percentage of the automatic 
classification results with manually classified data. 

# of clusters Correct Pred. Wrong Pred. 
7 67 % 33 % 
6 86 % 14 % 
4 81 % 19 % 
 

4 CONCLUSIONS 

An automatic classification for EARLINET data 
method based on Mahalanobis distance was 
presented. A Wilk’s lambda analysis was 
performed and the three best performing 
classifying parameters were the Saer at 532 nm; the 
RSaer and the B-AE (IR, UV). The prediction of 
the automatic classification showed positive 
results when compared against manually 
classified EARLINET data. The performance was 
further enhanced when the aerosol clusters were 
merged according to aerosol types’ similar 
characteristics. The fewer aerosol clusters make a 
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coarse aerosol identification and do not represent 
the wide aerosol spectrum. However, the positive 
learning success indicates that the user can select 
the number of clusters depending on the 
application. Here, we think that six aerosol 
clusters cover the aerosol situation with a 
configuration of 3 backscatter and 2 extinction 
coefficient profiles. Accordingly, the algorithm 
was trained with depolarization data that were 
randomly generated based on literature values, 
and showed the strengthening of correct 
prediction. 

Specifically, for the dust subtype the prediction 
rate was higher than 50 %, even though the 
spectral signature is easily identifiable, the paucity 
of depolarization measurements makes the 
classification trivial as polluted dust and mixed 
dust reflect similar behavior with the dust type. 
For Polluted Continental and Smoke categories 
the algorithm performed the worse, this was 
expected as the two subtypes are overlapping and 
is highly difficult to separate them. 

The manageability of the algorithm regarding the 
training dataset, the number of the clusters (i.e., 
aerosol types) and the classifying parameters (i.e., 
available intensive parameters) makes the method 
easily adaptable and handled by individual users. 
For instance, the training dataset can be easily 
enlarged with high quality data coming from a 
multitude of EARLINET stations and a longer 
time record. Moreover, new classifying 
parameters, as particle linear depolarization ratio 
at more wavelengths and aerosol extinction 
coefficient in the infrared, can be easily added as 
the observing capacity increases. Future work 
includes an extended EARLINET testing dataset 
for this study. 
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