131 research outputs found
Reconstructing dynamic regulatory maps
Even simple organisms have the ability to respond to internal and external stimuli. This response is carried out by a dynamic network of protein–DNA interactions that allows the specific regulation of genes needed for the response. We have developed a novel computational method that uses an input–output hidden Markov model to model these regulatory networks while taking into account their dynamic nature. Our method works by identifying bifurcation points, places in the time series where the expression of a subset of genes diverges from the rest of the genes. These points are annotated with the transcription factors regulating these transitions resulting in a unified temporal map. Applying our method to study yeast response to stress, we derive dynamic models that are able to recover many of the known aspects of these responses. Predictions made by our method have been experimentally validated leading to new roles for Ino4 and Gcn4 in controlling yeast response to stress. The temporal cascade of factors reveals common pathways and highlights differences between master and secondary factors in the utilization of network motifs and in condition-specific regulation
Associations between genomic stratification of breast cancer and centrally reviewed tumour pathology in the METABRIC cohort.
The integration of genomic and transcriptomic profiles of 2000 breast tumours from the METABRIC [Molecular Taxonomy of Breast Cancer International Consortium] cohort revealed ten subtypes, termed integrative clusters (IntClust/s), characterised by distinct genomic drivers. Central histopathology (N = 1643) review was undertaken to explore the relationship between these ten molecular subtypes and traditional clinicopathological features. IntClust subtypes were significantly associated with histological type, tumour grade, receptor status, and lymphocytic infiltration (p < 0.0001). Lymph node status and Nottingham Prognostic Index [NPI] categories were also significantly associated with IntClust subtype. IntClust 3 was enriched for tubular and lobular carcinomas, the latter largely accounting for the association with CDH1 mutations in this cluster. Mucinous carcinomas were not present in IntClusts 5 or 10, but did not show an association with any of the remaining IntClusts. In contrast, medullary-like cancers were associated with IntClust 10 (15/26). Hormone receptor-positive tumours were scattered across all IntClusts. IntClust 5 was dominated by HER2 positivity (127/151), including both hormone receptor-positive (60/72) and hormone receptor-negative tumours (67/77). Triple-negative tumours comprised the majority of IntClust 10 (132/159) and around a quarter of IntClust 4 (52/217). Whilst the ten IntClust subtypes of breast cancer show characteristic patterns of association with traditional clinicopathological variables, no IntClust can be adequately identified by these variables alone. Hence, the addition of genomic stratification has the potential to enhance the biological relevance of the current clinical evaluation and facilitate genome-guided therapeutic strategies
The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state
We introduce and analyze a minimal model of epigenetic silencing in budding
yeast, built upon known biomolecular interactions in the system. Doing so, we
identify the epigenetic marks essential for the bistability of epigenetic
states. The model explicitly incorporates two key chromatin marks, namely H4K16
acetylation and H3K79 methylation, and explores whether the presence of
multiple marks lead to a qualitatively different systems behavior. We find that
having both modifications is important for the robustness of epigenetic
silencing. Besides the silenced and transcriptionally active fate of chromatin,
our model leads to a novel state with bivalent (i.e., both active and
silencing) marks under certain perturbations (knock-out mutations, inhibition
or enhancement of enzymatic activity). The bivalent state appears under several
perturbations and is shown to result in patchy silencing. We also show that the
titration effect, owing to a limited supply of silencing proteins, can result
in counter-intuitive responses. The design principles of the silencing system
is systematically investigated and disparate experimental observations are
assessed within a single theoretical framework. Specifically, we discuss the
behavior of Sir protein recruitment, spreading and stability of silenced
regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the
controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page
Where Does Mediator Bind In Vivo?
Background: The Mediator complex associates with RNA polymerase (Pol) II, and it is recruited to enhancer regions by activator proteins under appropriate environmental conditions. However, the issue of Mediator association in yeast cells is controversial. Under optimal growth conditions (YPD medium), we were unable to detect Mediator at essentially any S. cerevisiae promoter region, including those supporting very high levels of transcription. In contrast, whole genome microarray experiments in synthetic complete (SC) medium reported that Mediator associates with many genes at both promoter and coding regions. Principal Findings: As assayed by chromatin immunoprecipitation, we show that there are a small number of Mediator targets in SC medium that are not observed in YPD medium. However, most Mediator targets identified in the genome-wide analysis are false positives that arose for several interrelated reasons: the use of overly lenient cut-offs; artifactual differences in apparent IP efficiencies among different genomic regions in the untagged strain; low fold-enrichments making it difficult to distinguish true Mediator targets from false positives that occur in the absence of the tagged Mediator protein. Lastly, apparent Mediator association in highly active coding regions is due to a non-specific effect on accessibility due to the lack of nucleosomes, not to a specific association of Mediator. Conclusions: These results indicate that Mediator does not bind to numerous sites in the yeast genome, but rathe
Prospective Study of Infection, Colonization and Carriage of Methicillin-Resistant Staphylococcus Aureus in an Outbreak Affecting 990 Patients
In the three years between November 1989 and October 1992, an outbreak of methicillin-resistantStaphylococcus aureus (MRSA) affected 990 patients at a university hospital. The distribution of patients with carriage, colonization or infection was investigated prospectively. Nosocomial acquisition was confirmed in at least 928 patients, 525 of whom were identified from clinical specimens as being infected (n=418) or colonized (n=107) by MRSA. An additional 403 patients were identified from screening specimens, of whom 58 subsequently became infected and 18 colonized. Screening of the nose, throat and perineum detected 98 % of all carriers. Of the 580 infections in 476 patients, surgical wound, urinary tract and skin infections accounted for 58 % of the infections. Of the 476 infected patients, death was attributable to MRSA infection in 13 %. Colonization with MRSA was found in 127 patients and 42 % of 165 colonized sites were the skin. Auto-infection from nasal carriage or cross-infection, probably via staff hands, seemed to be the most common mode of acquisition of MRSA infections
Mechanism and timing of Mcm2–7 ring closure during DNA replication origin licensing
The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.National Institutes of Health (U.S.) (Grant R01 GM52339)National Institutes of Health (U.S.) (Pre-Doctoral Training Grant GM007287)National Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051
Long-term follow-up of certolizumab pegol in uveitis due to immune-mediated inflammatory diseases: multicentre study of 80 patients
ObjectivesTo evaluate effectiveness and safety of certolizumab pegol (CZP) in uveitis due to immune-mediated inflammatory diseases (IMID).MethodsMulticentre study of CZP-treated patients with IMID uveitis refractory to conventional immunosuppressant. Effectiveness was assessed through the following ocular parameters: best-corrected visual acuity, anterior chamber cells, vitritis, macular thickness and retinal vasculitis. These variables were compared between the baseline, and first week, first, third, sixth months, first and second year.ResultsWe studied 80 (33 men/47 women) patients (111 affected eyes) with a mean age of 41.6 +/- 11.7 years. The IMID included were: spondyloarthritis (n=43), Behcet's disease (n=10), psoriatic arthritis (n=8), Crohn's disease (n=4), sarcoidosis (n=2), juvenile idiopathic arthritis (n=1), reactive arthritis (n=1), rheumatoid arthritis (n=1), relapsing polychondritis (n=1),ConclusionsCZP seems to be effective and safe in uveitis related to different IMID, even in patients refractory to previous biological drugs
Characterization of Leishmania donovani MCM4: Expression Patterns and Interaction with PCNA
Events leading to origin firing and fork elongation in eukaryotes involve several proteins which are mostly conserved across the various eukaryotic species. Nuclear DNA replication in trypanosomatids has thus far remained a largely uninvestigated area. While several eukaryotic replication protein orthologs have been annotated, many are missing, suggesting that novel replication mechanisms may apply in this group of organisms. Here, we characterize the expression of Leishmania donovani MCM4, and find that while it broadly resembles other eukaryotes, noteworthy differences exist. MCM4 is constitutively nuclear, signifying that, unlike what is seen in S.cerevisiae, varying subcellular localization of MCM4 is not a mode of replication regulation in Leishmania. Overexpression of MCM4 in Leishmania promastigotes causes progress through S phase faster than usual, implicating a role for MCM4 in the modulation of cell cycle progression. We find for the first time in eukaryotes, an interaction between any of the proteins of the MCM2-7 (MCM4) and PCNA. MCM4 colocalizes with PCNA in S phase cells, in keeping with the MCM2-7 complex being involved not only in replication initiation, but fork elongation as well. Analysis of a LdMCM4 mutant indicates that MCM4 interacts with PCNA via the PIP box motif of MCM4 - perhaps as an integral component of the MCM2-7 complex, although we have no direct evidence that MCM4 harboring a PIP box mutation can still functionally associate with the other members of the MCM2-7 complex- and the PIP box motif is important for cell survival and viability. In Leishmania, MCM4 may possibly help in recruiting PCNA to chromatin, a role assigned to MCM10 in other eukaryotes
The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication
The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism
SirT1 modulates the estrogen–insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice
INTRODUCTION: Estrogen and insulin-like growth factor-1 (IGF-1) play important roles in mammary gland development and breast cancer. SirT1 is a highly conserved protein deacetylase that can regulate the insulin/IGF-1 signaling in lower organisms, as well as a growing number of transcription factors, including NF-κB, in mammalian cells. Whether SirT1 regulates the IGF-1 signaling for mammary gland development and function, however, is not clear. In the present study, this role of SirT1 was examined by studying SirT1-deficient mice. METHODS: SirT1-deficient (SirT1(ko/ko)) mice were generated by crossing a new strain of mice harboring a conditional targeted mutation in the SirT1 gene (SirT1(co/co)) with CMV-Cre transgenic mice. Whole mount and histology analyses, immunofluorescence staining, immunohistochemistry, and western blotting were used to characterize mammary gland development in virgin and pregnant mice. The effect of exogenous estrogen was also examined by subcutaneous implantation of a slow-releasing pellet in the subscapular region. RESULTS: Both male and female SirT1(ko/ko )mice can be fertile despite the growth retardation phenotype. Virgin SirT1(ko/ko )mice displayed impeded ductal morphogenesis, whereas pregnant SirT1(ko/ko )mice manifested lactation failure due to an underdeveloped lobuloalveolar network. Estrogen implantation was sufficient to rescue ductal morphogenesis. Exogenous estrogen reversed the increased basal level of IGF-1 binding protein-1 expression in SirT1(ko/ko )mammary tissues, but not that of IκBα expression, suggesting that increased levels of estrogen enhanced the production of local IGF-1 and rescued ductal morphogenesis. Additionally, TNFα treatment enhanced the level of the newly synthesized IκBα in SirT1(ko/ko )cells. SirT1 deficiency therefore affects the cellular response to multiple extrinsic signals. CONCLUSION: SirT1 modulates the IGF-1 signaling critical for both growth regulation and mammary gland development in mice. SirT1 deficiency deregulates the expression of IGF-1 binding protein-1 and attenuates the effect of IGF-1 signals, including estrogen-stimulated local IGF-1 signaling for the onset of ductal morphogenesis. These findings suggest that the enzymatic activity of SirT1 may influence both normal growth and malignant growth of mammary epithelial cells
- …