167 research outputs found

    In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still lacking. We profiled 542,500 transcripts in peripheral blood mononuclear cells (PBMCs) from 20 SSc patients and 20 healthy donors using Clariom D arrays, confirming the results by Reverse Transcription Polymerase-chain reaction (RT-PCR). A total of 837 coding-genes were modulated in SSc patients, whereas only one lncRNA, heterogeneous nuclear ribonucleoprotein U processed transcript (ncRNA00201), was significantly downregulated. This transcript regulates tumor proliferation and its gene target hnRNPC (Heterogeneous nuclear ribonucleoproteins C) encodes for a SSc-associated auto-antigen. NcRNA00201 targeted micro RNAs (miRNAs) regulating the most highly connected genes in the Protein-Protein interaction (PPI) network of the SSc transcriptome. A total of 26 of these miRNAs targeted genes involved in pathways connected to the three main features of SSc and to cancer development including Epidermal growth factor (EGF) receptor, ErbB1 downstream, Sphingosine 1 phosphate receptor 1 (S1P1), Activin receptor-like kinase 1 (ALK1), Endothelins, Ras homolog family member A (RhoA), Class I Phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (RAC1), Transforming growth factor (TGF)-beta receptor, Myeloid differentiation primary response 88 (MyD88) and Toll-like receptors (TLRs) pathways. In SSc, the identification of a unique deregulated lncRNA that regulates genes involved in the three main features of the disease and in tumor-associated pathways, provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies

    Long Non-Coding RNAs Modulate Sj\uf6gren's Syndrome Associated Gene Expression and Are Involved in the Pathogenesis of the Disease

    Get PDF
    Primary Sjogren's syndrome (pSjS) is a chronic systemic autoimmune disorder, primarily affecting exocrine glands; its pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) are thought to play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in pSjS is still lacking. To this aim, the expression of more than 540,000 human transcripts, including those ascribed to more than 50,000 lncRNAs is profiled at the same time, in a cohort of 16 peripheral blood mononuclear cells PBMCs samples (eight pSjS and eight healthy subjects). A complex network analysis is carried out on the global set of molecular interactions among modulated genes and lncRNAs, leading to the identification of reliable lncRNA-miRNA-gene functional interactions. Taking this approach, a few lncRNAs are identified as targeting highly connected genes in the pSjS transcriptome, since they have a major impact on gene modulation in the disease. Such genes are involved in biological processes and molecular pathways crucial in the pathogenesis of pSjS, including immune response, B cell development and function, inflammation, apoptosis, type I and gamma interferon, epithelial cell adhesion and polarization. The identification of deregulated lncRNAs that modulate genes involved in the typical features of the disease provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies

    Antibodies Directed against a Peptide Epitope of a Klebsiella pneumoniae-Derived Protein Are Present in Ankylosing Spondylitis

    Get PDF
    Ankylosing spondylitis (AS) is a chronic inflammatory arthritis of unknown origin. Its autoimmune origin has been suggested but never proven. Several reports have implicated Klebsiella pneumoniae as a triggering or perpetuating factor in AS; however, its role in the disease pathogenesis remains debated. Moreover, despite extensive investigations, a biomarker for AS has not yet been identified. To clarify these issues, we screened a random peptide library with pooled IgGs obtained from 40 patients with AS. A peptide (AS peptide) selected from the library was recognized by serum IgGs from 170 of 200 (85%) patients with AS but not by serum specimens from 100 healthy controls. Interestingly, the AS peptide shows a sequence similarity with several molecules expressed at the fibrocartilaginous sites that are primarily involved in the AS inflammatory process. Moreover, the peptide is highly homologous to a Klebsiella pneumoniae dipeptidase (DPP) protein. The antibody affinity purified against the AS peptide recognizes the autoantigens and the DPP protein. Furthermore, serum IgG antibodies against the Klebsiella DPP121-145 peptide epitope were detected in 190 of 200 patients with AS (95%), 3 of 200 patients with rheumatoid arthritis (1.5%) and only 1 of 100 (1%) patients with psoriatic arthritis. Such reactivity was not detected in healthy control donors. Our results show that antibodies directed against an epitope of a Klebsiella pneumoniae-derived protein are present in nearly all patients with AS. In the absence of serological biomarkers for AS, such antibodies may represent a useful tool in the diagnosis of the disease

    Immunophenotypic Analysis of B Lymphocytes in Patients with Common Variable Immunodeficiency: Identification of CD23 as a Useful Marker in the Definition of the Disease

    Get PDF
    Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by the failure of B lymphocytes differentiation leading to deficient immunoglobulins secretion. The identified genetic defects account only for a minority of cases. The importance of B cells immunophenotyping in the classification of CVID is known. This procedure can identify alterations on the cell surface molecules expression that could explain some immunological disorders characteristic of CVID. Moreover, some immunophenotypical aspects can correlate with clinical features of the disease. We used this procedure to analyze a cohort of 23 patients affected by CVID, in order to identify the novel alterations of B cells and to find the possible correlations with clinical features. Circulating B cells were studied by flow cytometry incubating whole blood with specific antibodies for B cell surface molecules including CD27, IgM, IgD, CD21, and CD23. We compared the population of “switched memory” IgD− CD27+ B lymphocytes with the population of “switched memory” IgM− IgD− CD23− CD27+ B cells. These last B cells were reduced in patients compared to healthy controls; moreover, IgM− IgD− CD23− CD27+ B cells were lower than IgD− CD27+ B cells in patients with CVID. The reduction of this subset of B lymphocytes correlates more tightly than IgD− CD27+ B cells with lymphadenopathy and airways infections. In conclusion, our findings may help in better identifying patients with CVID

    Gene expression profiling in circulating endothelial cells from systemic sclerosis patients shows an altered control of apoptosis and angiogenesis that is modified by iloprost infusion

    Get PDF
    ABSTRACT: INTRODUCTION: Circulating endothelial cells are increased in patients affected by Systemic Sclerosis and their number strongly correlates with vascular damage. The effects of Iloprost in Systemic sclerosis are only partially known. We aimed at studying the gene expression profile of circulating endothelial cells and the effects of Iloprost infusion on endothelial cells number and gene expression in patients with Systemic Sclerosis. METHODS: We enrolled 50 patients affected by Systemic Sclerosis: 37 patients without and 13 patients with digital ulcers. Blood samples were collected from all patients before and 72 hours after either a single day or five days eight hours Iloprost infusion. Blood samples were also collected from 50 sex and age matched healthy controls. Circulating endothelial cells and endothelial progenitors cells were detected in the peripheral blood of patients with Systemic Sclerosis by flow cytometry with a four-colour panel of antibodies. Statistical analysis was performed with the SPSS 16 statistical package. Circulating endothelial cells were then isolated from peripheral blood by immunomagnetic CD45 negative selection for the gene array study. RESULTS: The number of both circulating endothelial cells and progenitors was significantly higher in patients affected by Systemic Sclerosis than in controls and among patients in those with digital ulcers than in patients without them. Circulating endothelial cells and progenitors number increased after Iloprost infusion. Gene array analysis of endothelial cells showed a different transcriptional profile in patients compared to controls: indeed patients displayed an altered expression of genes involved in the control of apoptosis and angiogenesis. Iloprost infusion had a profound impact on endothelial cells gene expression since the treatment was able to modulate a very high number of transcripts. CONCLUSIONS: We report here that circulating endothelial cells in patients with Systemic Sclerosis show an altered expression of genes involved in the control of apoptosis and angiogenesis. Moreover we describe that Iloprost infusion has a strong effect on endothelial cells and progenitors since it is able to modulate both their number and their gene expression profile

    In Celiac Disease, a Subset of Autoantibodies against Transglutaminase Binds Toll-Like Receptor 4 and Induces Activation of Monocytes

    Get PDF
    BACKGROUND: Celiac disease is a small intestine inflammatory disorder with multiple organ involvement, sustained by an inappropriate immune response to dietary gluten. Anti-transglutaminase antibodies are a typical serological marker in patients with active disease, and may disappear during a gluten-free diet treatment. Involvement of infectious agents and innate immunity has been suggested but never proven. Molecular mimicry is one of the mechanisms that links infection and autoimmunity. METHODS AND FINDINGS: In our attempt to clarify the pathogenesis of celiac disease, we screened a random peptide library with pooled sera of patients affected by active disease after a pre-screening with the sera of the same patients on a gluten-free diet. We identified a peptide recognized by serum immunoglobulins of patients with active disease, but not by those of patients on a gluten-free diet. This peptide shares homology with the rotavirus major neutralizing protein VP-7 and with the self-antigens tissue transglutaminase, human heat shock protein 60, desmoglein 1, and Toll-like receptor 4. We show that antibodies against the peptide affinity-purified from the sera of patients with active disease recognize the viral product and self-antigens in ELISA and Western blot. These antibodies were able to induce increased epithelial cell permeability evaluated by transepithelial flux of [(3)H] mannitol in the T84 human intestinal epithelial cell line. Finally, the purified antibodies induced monocyte activation upon binding Toll-like receptor 4, evaluated both by surface expression of activation markers and by production of pro-inflammatory cytokines. CONCLUSIONS: Our findings show that in active celiac disease, a subset of anti-transglutaminase IgA antibodies recognize the viral protein VP-7, suggesting a possible involvement of rotavirus infection in the pathogenesis of the disease, through a mechanism of molecular mimicry. Moreover, such antibodies recognize self-antigens and are functionally active, able to increase intestinal permeability and induce monocyte activation. We therefore provide evidence for the involvement of innate immunity in the pathogenesis of celiac disease through a previously unknown mechanism of engagement of Toll-like receptor 4

    Profibrotic Effects of Endothelin-1 on Fibroblasts Are Mediated by Aldosterone in Vitro: Relevance to the Pathogenesis and Therapy of Systemic Sclerosis and Pulmonary Arterial Hypertension

    Get PDF
    Endothelin-1 (ET-1) is a vasoactive and profibrotic peptide that plays a pivotal role in diseases such as systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH), by inducing fibrosis and vascular remodeling. Such effects may be sustained by the induction of aldosterone production and reactive oxygen species (ROS). We have used fibroblasts obtained from skin of healthy donors and SSc patients and commercial fibroblasts from lung to evaluate whether ET-1 is able to stimulate ROS production directly or indirectly through aldosterone induction. We found that ET-1 receptors are present in all types of fibroblasts analyzed, whereas the expression of mineralocorticoid receptor (MCR) is lower in dermal fibroblasts from healthy donors (HDFs) compared to fibroblasts derived from lung (HPFs) or from skin of SSc patients (SScHDFs). ET-1 induces ROS production in HDFs and SScHDFs after 24 h of incubation involving its receptor B (ETB), whereas aldosterone exerts its effects after 40 min of incubation. Moreover, ROS production was inhibited by the pre-incubation of cells with MCR inhibitor. Our results indicate that ET-1 induces ROS indirectly through aldosterone production suggesting that aldosterone may play a pivotal role in the pathogenesis of SSc and PAH

    Endothelin Receptors Expressed by Immune Cells Are Involved in Modulation of Inflammation and in Fibrosis: Relevance to the Pathogenesis of Systemic Sclerosis

    Get PDF
    open13noEndothelin-1 (ET-1) plays a pivotal role in vasoconstriction, fibrosis, and inflammation, the key features of systemic sclerosis (SSc). ET-1 receptors (ETA and ETB) are expressed on endothelial cells, smooth muscle cells, and fibroblasts, but their presence on immune cells has not been deeply investigated so far. Endothelin receptors antagonists such as bosentan have beneficial effects on vasoconstriction and fibrosis, but less is known about their potential anti-inflammatory effects. We studied the expression of ET-1 receptors on immune cells (T and B lymphocytes, monocytes, and neutrophils) and the link between ET-1 and inflammation in patients with SSc. We show here that ET-1 exerts a proinflammatory effect in CD4+ T cells, since it induces an increased IFN-γ production; preincubation with antagonists of both receptors reduces IFN-γ production. Moreover, following ET-1 stimulation, neutrophils produce proinflammatory mediators, thus amplifying the effects of activated CD4+ T cells. Our data indicate that ET-1 system is involved in the pathogenesis of inflammation and fibrosis typical of SSc, through the activation of T lymphocytes and neutrophils and the consequent release of proinflammatory and profibrotic cytokines. These findings suggest that dual ET-1 receptors antagonist therapy, besides its effect on vasculopathy, has a profound impact on the immune system favouring antiinflammatory and antifibrogenic effects.openElisa, Tinazzi; Antonio, Puccetti; Giuseppe, Patuzzo; Alessandro, Barbieri; Giuseppe, Argentino; Federico, Confente; Marzia, Dolcino; Ruggero, Beri; Giacomo, Marchi; Andrea, Ottria; Daniela, Righetti; Mariaelisa, Rampudda; Claudio, LunardiTinazzi, Elisa; Puccetti, Antonio; Patuzzo, Giuseppe; Barbieri, Alessandro; Argentino, Giuseppe; Confente, Federico; Dolcino, Marzia; Beri, Ruggero; Marchi, Giacomo; Ottria, Andrea; Righetti, Daniela; Rampudda, Mariaelisa; Lunardi, Claudi

    Type 1 neurofibromatosis complicated by pulmonary artery hypertension : a case report

    Get PDF
    We describe the case of a patient with neurofibromatosis type 1 (NF1) complicated by severe pulmonary aterial hypertension (PAH) ; only seven cases have been reported on this association so far, and PAH seems to be related to the vascular involvement of neurofibromatosis. The histology of our patient’s lung tissue showed thickening of arteries and veins by medial and/or intimal hypertrophy and fibrosis. In order to exclude a familiar PAH, the analysis of the bone morphogenetic protein receptor 2 gene was carried out, but no mutations were found. On the basis of histological findings and of the results of genetic study we believe that PAH was a complication of NF1 in our patient and we suggest to screen patients with NF1 for the presence of PAH by means of trans-thoracic echocardiogram

    A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells

    Get PDF
    Arginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1\ua0(IDO1) are immunoregulatory enzymes catalyzing the degradation of L-arginine and L-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity in dendritic cells (DCs). Despite considerable knowledge of their individual biology, no integrated functions of Arg1 and IDO1 have been reported yet. We found that IDO1 phosphorylation and consequent activation of IDO1 signaling in DCs was strictly dependent on prior expression of Arg1 and Arg1-dependent production of polyamines. Polyamines, either produced by DCs or released by bystander Arg1+ myeloid-derived suppressor cells, conditioned DCs toward an IDO1-dependent, immunosuppressive phenotype via activation of the Src kinase, which has IDO1-phosphorylating activity. Thus our data indicate that Arg1 and IDO1 are linked by an entwined pathway in immunometabolism and that their joint modulation could represent an important target for effective immunotherapy in several disease settings
    corecore