142 research outputs found
Recommended from our members
Thermal Diffusivity and Conductivity Measurements in Diamond Anvil Cells
We have undertaken a study of the feasibility of an innovative method for the determination of thermal properties of materials at extreme conditions. Our approach is essentiality an extension of the flash method to the geometry of the diamond-anvil cell and our ultimate goal is to greatly enlarge the pressure and temperature range over which thermal properties can be investigated. More specifically, we have performed test experiments to establish a technique for probing thermal diffusivity on samples of dimensions compatible with the physical constraints of the diamond anvil cell
Recommended from our members
An Integrated Method for Accurate Determination of Melting in High-Pressure Laser Heating Experiments
We present an integrated approach for melting determination by monitoring several criteria simultaneously. In particular we combine x-ray diffraction observations with the detection of discontinuities in the optical properties by spectroradiometric measurements. This approach significantly increases the confidence of melt identification, especially with low-Z samples. We demonstrate the method with observations of melt in oxygen at 47 and 55 gigapascals
Lattice dynamics of MgSiO perovskite (bridgmanite) studied by inelastic x-ray scattering and ab initio calculations
We have determined the lattice dynamics of MgSiO perovskite (bridgmanite)
by a combination of single-crystal inelastic x-ray scattering and ab initio
calculations. We observe a remarkable agreement between experiment and theory,
and provide accurate results for phonon dispersion relations, phonon density of
states and the full elasticity tensor. The present work constitutes an
important milestone to extend this kind of combined studies to extreme
conditions of pressure and temperature, directly relevant for the physics and
the chemistry of Earth's lower mantle
Experimental investigation of the stability of Fe-rich carbonates in the lower mantle
International audienceThe fate of carbonates in the Earth's mantle plays a key role in the geodynamical carbon cycle. Although iron is a major component of the Earth's lower mantle, the stability of Fe-bearing carbonates has rarely been studied. Here we present experimental results on the stability of Fe-rich carbonates at pressures ranging from 40 to 105 GPa and temperatures of 1450-3600 K, corresponding to depths within the Earth's lower mantle of about 1000-2400 km. Samples of iron oxides and iron-magnesium oxides were loaded into CO2 gas and laser heated in a diamond-anvil cell. The nature of crystalline run products was determined in situ by X-ray diffraction, and the recovered samples were studied by analytical transmission electron microscopy and scanning transmission X-ray microscopy. We show that Fe-(II) is systematically involved in redox reactions with CO2 yielding to Fe-(III)-bearing phases and diamonds. We also report a new Fe-(III)-bearing high-pressure phase resulting from the transformation of FeCO3 at pressures exceeding 40 GPa. The presence of both diamonds and an oxidized C-bearing phase suggests that oxidized and reduced forms of carbon might coexist in the deep mantle. Finally, the observed reactions potentially provide a new mechanism for diamond formation at great depth
Composition of the Earth's Inner Core from High-pressure Sound Velocity Measurements in Fe-Ni-Si alloys
International audienceWe performed room-temperature sound velocity and density measurements on a polycrystalline alloy, Fe0.89Ni0.04Si0.07, in the hexagonal close-packed (hcp) phase up to 108 GPa. Over the investigated pressure range the aggregate compressional sound velocity is ∼9% higher than in pure iron at the same density. The measured aggregate compressional (VP) and shear (VS) sound velocities, extrapolated to core densities and corrected for anharmonic temperature effects, are compared with seismic profiles. Our results provide constraints on the silicon abundance in the core, suggesting a model that simultaneously matches the primary seismic observables, density, P-wave and S-wave velocities, for an inner core containing 4 to 5 wt.% of Ni and 1 to 2 wt.% of Si
Recommended from our members
Diamond anvil cell experiments applied to the geochemistry of Earth's core formation
Fe–FeO and Fe–Fe<sub>3</sub>C melting relations at Earth's core–mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core
International audienceEutectic melting temperatures in the Fe–FeO and Fe–Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe–S and Fe–Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core–mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle
Structure and density of Fe-C liquid alloys under high pressure
International audienceThe density and structure of liquid Fe-C alloys have been measured up to 58 GPa and 3,200 K by in situ X-ray diffraction using a Paris-Edinburgh press and laser-heated diamond anvil cell. Study of the pressure evolution of the local structure inferred by X-ray diffraction measurements is important to understand the compression mechanism of the liquid. Obtained data show that the degree of compression is greater for the first coordination sphere than the second and third coordination spheres. The extrapolation of the measured density suggests that carbon cannot be the only light element alloyed to iron in the Earth's core, as 8-16 at % C (1.8-3.7 wt % C) would be necessary to explain the density deficit of the outer core relative to pure Fe. This concentration is too high to account for outer core velocity. The presence of other light elements (e.g., O, Si, S, and H) is thus required
- …