481 research outputs found
Young "Dipper" Stars in Upper Sco and Oph Observed by K2
We present ten young (10 Myr) late-K and M dwarf stars observed in
K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or
aperiodic dimming events. Their optical light curves show 10-20 dips in
flux over the 80-day observing campaign with durations of 0.5-2 days and
depths of up to 40%. These stars are all members of the Ophiuchus
(1 Myr) or Upper Scorpius (10 Myr) star-forming regions. To
investigate the nature of these "dippers" we obtained: optical and
near-infrared spectra to determine stellar properties and identify accretion
signatures; adaptive optics imaging to search for close companions that could
cause optical variations and/or influence disk evolution; and
millimeter-wavelength observations to constrain disk dust and gas masses. The
spectra reveal Li I absorption and H emission consistent with stellar
youth (<50 Myr), but also accretion rates spanning those of classical and
weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary
disks extending to within 10 stellar radii in most cases; however, the
sub-mm observations imply disk masses that are an order of magnitude below
those of typical protoplanetary disks. We find a positive correlation between
dip depth and WISE-2 excess, which we interpret as evidence that the dipper
phenomenon is related to occulting structures in the inner disk, although this
is difficult to reconcile with the weakly accreting aperiodic dippers. We
consider three mechanisms to explain the dipper phenomenon: inner disk warps
near the co-rotation radius related to accretion; vortices at the inner disk
edge produced by the Rossby Wave Instability; and clumps of circumstellar
material related to planetesimal formation.Comment: Accepted to ApJ, 19 pages, 10 figure
Are inner disc misalignments common? ALMA reveals an isotropic outer disc inclination distribution for young dipper stars
Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions
THE ENIGMATIC and EPHEMERAL M DWARF SYSTEM KOI 6705: CHESHIRE CAT or WILD GOOSE?
We confirm a 0.995 day periodic planetary transit-like signal, KOI 6705.01, in the Kepler light curve of the star KIC 6423922. Optical and infrared spectra show that this star is a mid M-type dwarf with an effective temperature K, metallicity [Fe/H] = -0.08 ±0.10, radius Ro, and mass = 0.28 ±0.05Mo. The star is pc away and its space motion, rotation period, and lack of Hα emission indicate it is an older member of the "thin disk" population. On the other hand, the star exhibits excess infrared emission suggesting a dust disk more typical of a very young star. If the KOI 6705.01 signal is produced by a planet, the transit depth of 60 ppm means its radius is only R⊕, or about the size of the Moon. However, the duration ( hr) and time variation of KOI 6705.01 are anomalous: the signal was undetected in the first two years of the mission and increased through the latter two years. These characteristics require implausible orbits and material properties for any planet and rule out such an explanation, although a dust cloud is possible. We excluded several false positive scenarios including background stars, scattered light from stars that are nearby on the sky, and electronic cross-talk between detector readout channels. We find the most likely explanation to be that KOI 6705.01 is a false positive created by charge transfer inefficiency in a detector column on which KIC 6423922 and a 1.99 day eclipsing binary both happened to fall
Rapid classification of TESS planet candidates with convolutional neural networks
Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates from space-based survey missions increases. This is especially true for NASA's TESS mission which generates thousands of new candidates each month. Here we created the first deep learning model capable of classifying TESS planet candidates. We adapted the neural network model of Ansdell et al. (2018) to TESS data. We then trained and tested this updated model on 4 sectors of high-fidelity, pixel-level simulations data created using the Lilith simulator and processed using the full TESS SPOC pipeline. We find our model performs very well on our simulated data, with 97% average precision and 92% accuracy on planets in the 2-class model. This accuracy is also boosted by another ~4% if planets found at the wrong periods are included. We also performed 3- and 4-class classification of planets, blended & target eclipsing binaries, and non-astrophysical false positives, which have slightly lower average precision and planet accuracies, but are useful for follow-up decisions. When applied to real TESS data, 61% of TCEs coincident with currently published TOIs are recovered as planets, 4% more are suggested to be EBs, and we propose a further 200 TCEs as planet candidates
Demographics of young stars and their protoplanetary disks: lessons learned on disk evolution and its connection to planet formation
Since Protostars and Planets VI (PPVI), our knowledge of the global
properties of protoplanetary and debris disks, as well as of young stars, has
dramatically improved. At the time of PPVI, mm-observations and optical to
near-infrared spectroscopic surveys were largely limited to the Taurus
star-forming region, especially of its most massive disk and stellar
population. Now, near-complete surveys of multiple star-forming regions cover
both spectroscopy of young stars and mm interferometry of their protoplanetary
disks. This provides an unprecedented statistical sample of stellar masses and
mass accretion rates, as well as disk masses and radii, for almost 1000 young
stellar objects within 300 pc from us, while also sampling different
evolutionary stages, ages, and environments. At the same time, surveys of
debris disks are revealing the bulk properties of this class of more evolved
objects. This chapter reviews the statistics of these measured global star and
disk properties and discusses their constraints on theoretical models
describing global disk evolution. Our comparisons of observations to
theoretical model predictions extends beyond the traditional viscous evolution
framework to include analytical descriptions of magnetic wind effects. Finally,
we discuss how recent observational results can provide a framework for models
of planet population synthesis and planet formation.Comment: Review Chapter for Protostars and Planets VII, Editors: Shu-ichiro
Inutsuka, Yuri Aikawa, Takayuki Muto, Kengo Tomida, and Motohide Tamura.
Accepted version after interaction with the referees and before community
feedback. 21 pages (24 with references), 8 figures. Data table available at
http://ppvii.org/chapter/15
New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region
Transition disks with large dust cavities around young stars are promising
targets for studying planet formation. Previous studies have revealed the
presence of gas cavities inside the dust cavities hinting at recently formed,
giant planets. However, many of these studies are biased towards the brightest
disks in the nearby star forming regions, and it is not possible to derive
reliable statistics that can be compared with exoplanet populations. We present
the analysis of 11 transition disks with large cavities (>20 AU radius) from a
complete disk survey of the Lupus star forming region, using ALMA Band 7
observations at 0.3" (22-30 AU radius) resolution of the 345 GHz continuum,
13CO and C18O 3-2 observations and the Spectral Energy Distribution of each
source. Gas and dust surface density profiles are derived using the
physical-chemical modeling code DALI. This is the first study of transition
disks of large cavities within a complete disk survey within a star forming
region. The dust cavity sizes range from 20-90 AU radius and in three cases, a
gas cavity is resolved as well. The deep drops in gas density and large dust
cavity sizes are consistent with clearing by giant planets. The fraction of
transition disks with large cavities in Lupus is ~11%, which is inconsistent
with exoplanet population studies of giant planets at wide orbits. Furthermore,
we present a hypothesis of an evolutionary path for large massive disks
evolving into transition disks with large cavities
- …