80 research outputs found

    On Predictive Coding for Erasure Channels Using a Kalman Framework

    Get PDF
    We present a new design method for robust low-delay coding of autoregressive (AR) sources for transmission across erasure channels. It is a fundamental rethinking of existing concepts. It considers the encoder a mechanism that produces signal measurements from which the decoder estimates the original signal. The method is based on linear predictive coding and Kalman estimation at the decoder. We employ a novel encoder state-space representation with a linear quantization noise model. The encoder is represented by the Kalman measurement at the decoder. The presented method designs the encoder and decoder offline through an iterative algorithm based on closed-form minimization of the trace of the decoder state error covariance. The design method is shown to provide considerable performance gains, when the transmitted quantized prediction errors are subject to loss, in terms of signal-to-noise ratio (SNR) compared to the same coding framework optimized for no loss. The design method applies to stationary auto-regressive sources of any order. We demonstrate the method in a framework based on a generalized differential pulse code modulation (DPCM) encoder. The presented principles can be applied to more complicated coding systems that incorporate predictive coding as well

    Compressed Domain Packet Loss Concealment of Sinusoidally Coded Speech

    Get PDF
    In this paper we consider the problem of packet loss concealment for Voice over IP (VoIP). The speech signal is compressed at the transmitter using A sinusoidal coding scheme working at 8 kbit/s. At the receiver, packet loss concealment is carried out working directly on the quantized sinusoidal parameters, based on time-scaling of the packets surrounding the missing ones. Subjective listening tests show promising results indicating the potential of sinusoidal speech coding for VoIP

    Fixed-Lag Smoothing for Low-Delay Predictive Coding with Noise Shaping for Lossy Networks

    Get PDF
    We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible

    Multiband Amplitude Modulated Sinusoidal Audio Modeling

    Get PDF

    Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately half of all human genes use alternative transcription start sites (TSSs) to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage.</p> <p>Results</p> <p>By profiling 108 colorectal samples using exon arrays, we identified nine genes (<it>TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5</it>, and <it>SCIN</it>) showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for <it>CHEK1, OSBPL1A</it>, and <it>TCF12 </it>in a subset of these cancer types.</p> <p>To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both <it>OSBPL1A </it>and <it>TRAK1</it>. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples.</p> <p>Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples.</p> <p>Conclusions</p> <p>Alternative TSS usage in colorectal adenoma and cancer samples has been shown for nine genes, and <it>OSBPL1A </it>and <it>TRAK1 </it>were found to be regulated <it>in vitro </it>by Wnt signaling. TCF12 protein expression was upregulated in cancer samples and correlated with progression free survival.</p

    SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    Get PDF
    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA‐sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up‐regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt‐regulated transcription factors, including ASCL2, ETS2, and c‐Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO‐CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) “sponging” miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3′UTR of Stearoyl‐CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down‐regulated upon SNHG16 silencing. In conclusion, up‐regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms

    <i>SNHG5</i> promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization

    No full text
    We currently have limited knowledge of the involvement of long non-coding RNAs (lncRNAs) in normal cellular processes and pathologies. Here, we identify and characterize SNHG5 as a stable cytoplasmic lncRNA with up-regulated expression in colorectal cancer. Depletion of SNHG5 induces cell cycle arrest and apoptosis in vitro and limits tumour outgrowth in vivo, whereas SNHG5 overexpression counteracts oxaliplatin-induced apoptosis. Using an unbiased approach, we identify 121 transcript sites interacting with SNHG5 in the cytoplasm. Importantly, knockdown of key SNHG5 target transcripts, including SPATS2, induces apoptosis and thus mimics the effect seen following SNHG5 depletion. Mechanistically, we suggest that SNHG5 stabilizes the target transcripts by blocking their degradation by STAU1. Accordingly, depletion of STAU1 rescues the apoptosis induced after SNHG5 knockdown. Hence, we characterize SNHG5 as a lncRNA promoting tumour cell survival in colorectal cancer and delineate a novel mechanism in which a cytoplasmic lncRNA functions through blocking the action of STAU1
    • …
    corecore