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Amplitude Modulated Sinusoidal Models for

Audio Modeling and Coding

Mads Græsbøll Christensen?, Søren Vang Andersen, and Søren Holdt Jensen

Department of Communication Technology,
Aalborg University, Denmark
{mgc,sva,shj}@kom.auc.dk

Abstract. In this paper a new perspective on modeling of transient phe-
nomena in the context of sinusoidal audio modeling and coding is pre-
sented. In our approach the task of �nding time-varying amplitudes for
sinusoidal models is viewed as an AM demodulation problem. A general
perfect reconstruction framework for amplitude modulated sinusoids is
introduced and model reductions lead to a model for audio compression.
Demodulation methods are considered for estimation of the time-varying
amplitudes, and inherent constraints and limitations are discussed. Fi-
nally, some applications are considered and discussed and the concepts
are demonstrated to improve sinusoidal modeling of audio and speech.

1 Introduction

In the last couple of decades sinusoidal modeling and coding of both speech and
audio in general has received great attention in research. In its most general form,
it models a segment of a signal as a �nite sum of sinusoidal components each
having a time-varying amplitude and a time-varying instantaneous phase. Per-
haps the most commonly used derivative of this model is the constant-frequency
constant-amplitude model known as the basic sinusoidal model. This model is
based on the assumptions that the amplitudes and frequencies remain constant
within the segment. It has been used for many years in speech modeling and
transformation [1]. The model, however, has problems in modeling transient
phenomena such as onsets, which causes so-called pre-echos to occur. This is ba-
sically due to the quasi-stationarity assumptions of the model being violated and
the fundamental trade-o� between time and frequency resolution. Also, the use
of overlap-add or interpolative synthesis inevitably smears the time-resolution.

Many di�erent strategies for handling time-varying amplitudes have surfaced
in recent years. For example, the use of time-adaptive segmentation [2] improves
performance greatly at the cost of increased delay. But even then pre-echos may
still occur in overlap regions or if interpolative synthesis [1] is used. Also, the
use of exponential dampening of each sinusoid has been extensively studied [3�
5], although issues concerning quantization remain unsolved. Other approaches
include the use of one common dampening factor for all sinusoids [6], the use of
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asymmetric windows [7], the use of an envelope estimated by low-pass �ltering
of the absolute value of the input [8] and the approaches taken in [9, 10]. In
[9] lines are �tted to the instantaneous envelope and then used in sinusoidal
modeling, and in [10] transient locations are modi�ed in time to reduce pre-
echo artifacts. The latter requires the use of dynamic time segmentation. Also,
tracking of individual speech formants by means of an energy separation into
amplitude modulation and frequency modulation (FM) contributions has been
studied in [11�13].

In this paper we propose amplitude modulated sinusoidal models for audio
modeling and coding applications. The rest of the paper is organized as follows:
In section 2 the mathematical background is presented. A general perfect recon-
struction model is derived in section 3, and in section 4 a model which addresses
one of the major issues of audio coding regardless of type, namely pre-echo, is
presented along with a computationally simple estimation technique. Finally, in
section 5 some experimental results are presented and discussed and section 6
concludes on the work.

2 Some Preliminaries

The methods proposed in this paper are all based on the so-called analytic signal,
which is derived from the Hilbert transform. First, we introduce the Hilbert
transform and de�ne the analytic signal and the instantaneous envelope. Then
we brie�y state Bedrosian's theorem, which is essential to this paper.

De�nition 1 (Discrete Hilbert Transform). Let xr(n) be a discrete real
signal. The Discrete Hilbert transform, H{·}, of this, denoted xi(n), is then
de�ned as (see e.g. [14])

xi(n) = H{xr(n)} =
∞∑

m=−∞
h(m)xr(n−m) . (1)

where h(n) is the impulse response of the discrete Hilbert transform given by

h(n) =

{
2 sin2(πn/2)

πn , n 6= 0
0, n = 0

. (2)

A useful way of looking at the Hilbert transform, an perhaps a more intuitive
de�nition, is in the frequency domain:

Xi(ω) = H(ω)Xr(ω), with H(ω) =

 j, for −π < ω < 0
0, for ω = {0, π}
−j, for 0 < ω < π

. (3)

where Xi(ω) and Xr(ω) are the Fourier transforms (denoted F{·}) of xi(n) and
xr(n), respectively, and H(ω) is the Fourier transform of h(n). The so-called
analytic signal and instantaneous envelope are then de�ned as



xc(n) = xr(n) + jxi(n) and |xc(n)| =
√

x2
r(n) + x2

i (n) , (4)

respectively. With these de�nitions in place, we now state Bedrosian's theorem
[15].

Theorem 1 (Bedrosian). Let f(n) and g(n) denote generally complex func-
tions in `2(Z) of the real, discrete variable n. If

1. the Fourier transforms F (ω) of f(n) is zero for a < |ω| ≤ π and the Fourier
transform G(ω) of g(n) is zero for 0 ≤ |ω| < a, where a is an arbitrary
positive constant, or

2. f(n) and g(n) are analytic, then

H{f(n)g(n)} = f(n)H{g(n)} . (5)

For proof of the continuous case see [15]. The theorem holds also for periodic
signals in which case the Fourier series should be applied.

3 Sum of Amplitude Modulated Sinusoids

In this section we consider a perfect reconstruction framework based on a model
consisting of a sum of amplitude modulated sinusoids:

x̂(n) =
Q∑

q=1

γq(n)Aq cos(ωqn + φq) for n = 0, . . . , N − 1 , (6)

where γq(n) is the amplitude modulating signal, Aq the amplitude, ωq the fre-
quency, and φq the phase of the qth sinusoid. We note in the passing that the
aforementioned exponential sinusoidal model [3�5] fall in to this category.

Assume that the signal has been split into a set of subbands by a perfect
reconstruction nonuniform Q-band �lterbank such as [16] having a set of cut-o�
frequencies Ωq for q = 0, 1, . . . , Q where Ω0 = 0 and ΩQ = π. Then we ex-
press the contents of each individual subband xq(n) as an amplitude modulated
sinusoid placed in the middle of the band, i.e.

xq(n) = γq(n)Aq cos(ωqn + φq) = γq(n)sq(n) , (7)

where ωq = Ωq+Ωq−1
2 , γq(n) ∈ C, i.e. the modulation is complex. We start our

demodulation by �nding the analytic signal representation of both the left and
right side of the previous equation:

γq(n)sq(n) + jH{γq(n)sq(n)} = xq(n) + jH{xq(n)} , (8)

which according to Bedrosian's theorem is equal to

γq(n)sq(n) + jH{γq(n)sq(n)} = γq(n) (sq(n) + jH{sq(n)}) (9)

= γq(n)Al exp (j(ωqn + φq)) . (10)



This means that we can simply perform complex demodulation in each individual
subband using a complex sinusoid, i.e.

γq(n) = (xq(n) + jH{xq(n)}) 1
Aq

exp(−j(ωqn + φq)) . (11)

In this case we have a modulation with a bandwidth equal to the bandwidth
of the subband, ∆q = Ωq −Ωq−1.

It is of interest to relax the constraint on the frequency of the carrier. Here we
consider a more general scenario, where the carrier may be placed anywhere in
the subband, i.e. Ωq−1 ≤ ωq ≤ Ωq. In this case, the modulation is asymmetrical
around the carrier in the spectrum. An alternative interpretation is that the
carrier is both amplitude and phase modulated simultaneously.

Alternatively, we can split the modulation into an upper (usb) and a lower
sideband (lsb). These can be obtained by calculating the analytic signal of γq(n)
and γ∗q (n), which is similar to zeroing out the negative frequencies:

γq,usb(n) =
1
2

(γq(n) + jH{γq(n)}) (12)

γq,lsb(n) =
1
2

(
γ∗q (n) + jH{γ∗q (n)}

)
. (13)

The complex modulating signal can be reconstructed as

γq(n) = γq,usb(n) + γ∗q,lsb(n) . (14)

The modulating signal can be written as γq(n) = C +b(n), where b(n) is zero
mean. For C 6= 0, this is the case where the sinusoidal carrier is present in the
spectrum in the form of a discrete frequency component. For the special case that
C = 0, we have what is known as suppressed carrier AM, i.e. the carrier will not
be present in the spectrum. In the context of speech modeling this representation
may be useful in modeling non-tonal parts, e.g. unvoiced speech, whereas the
non-suppressed AM (C 6= 0) case may be well-suited for voiced speech.

In the particular case that the modulating signal is both non-negative and
real, i.e. γq(n) ∈ R and γq(n) ≥ 0, the demodulation simply reduces to

γq(n) =
1

Aq
|xq(n) + jH{xq(n)}| , (15)

as the instantaneous envelope of the carrier is equal to 1. This last estimation
is lossy as opposed to the previous demodulations. Notice that in the perfect
reconstruction scenario, the �ltering of the signal into subbands and subsequent
demodulation can be implemented e�ciently using an FFT.

An alternative to the �lterbank-based sum of amplitude modulated sinu-
soids scheme, which requires that the sinusoidal components are well spaced in
frequency is the use of periodic algebraic separation [17, 18]. This allows for de-
modulation of closely spaced periodic components provided that the periods are
known.



4 Amplitude Modulated Sum of Sinusoids

In this section a model for audio compression is introduced. This model ad-
dresses one of the major problems of audio coding regardless of type, namely
pre-echo control. The perfect reconstruction model of the previous section has
an amplitude modulating signal of each individual sinusoid. Here, we explore
the notion of having more sinusoids in each subband and that modulating signal
being identical for all sinusoids in the subband. This is especially useful in the
context of modeling onsets and may even be used in the one-band case for low
bit-rate or single source applications. The model of the qth subband is:

x̂q(n) =γq(n)
Lq∑
l=1

Aq,l cos(ωq,ln + φq,l) = γq(n)ŝq(n) , (16)

where ŝq(n) is the constant-amplitude part. In the one-band case where xq(n) =
x(n) the models in [6�9] all fall into this category. These, however, do not re�ect
human sound perception very well as pre-echos may occur in the individual criti-
cal bands (see e.g. [19]). Neither do they take the presence of multiple temporally
overlapping sources into account. The sum of amplitude modulated sinusoids,
however, does take multiple sources into account.

The basic principle in the estimation of the modulating signal γq(n) is that
it can be separated from the constant-amplitude part of our model x̂q(n) under
certain conditions. First we write the instantaneous envelope of equation 16, i.e.

|x̂q(n) + jH{x̂q(n)}| = |γq(n)ŝq(n) + jH{γq(n)ŝq(n)}| . (17)

Since we are concerned here with sinusoidal modeling, we constrain the mod-
ulation to the case of non-suppressed carrier and the physically meaningful non-
negative and real modulating signal. Equation (17) can then be rewritten using
Bedrosian's theorem:

|γq(n)ŝq(n) + jH{γq(n)ŝq(n)}| = γq(n)|ŝq(n) + jH{ŝq(n)}| . (18)

For this to be true, our constant-amplitude model and the amplitude modulation
may not overlap in frequency, i.e. we have that the lowest frequency must be
above the bandwidth, BW , of the modulating signal

BW < min
l

ωq,l . (19)

Using this constraint, we now proceed in the estimation of the amplitude
modulating signal γq(n) by �nding the analytic signal of the sinusoidal model

x̂q,c(n) =
Lq∑
l=1

Alγq(n) exp(jφq,l) exp(jωq,ln) , (20)



with subscript c denoting the analytic signal. We then �nd the squared instan-
taneous envelope of the model:

|x̂q,c(n)|2 =
Lq∑
l=1

Lq∑
k=1

γ2
q (n)Aq,lAq,k exp(j(φq,k − φq,l)) exp(j(ωq,k − ωq,l)n). (21)

The squared instantaneous envelope is thus composed of a set of auto-terms
(l = k) which identi�es the amplitude modulating signal and a set of interfering
cross-terms (l 6= k). From this it can be seen that the frequencies of these
cross-terms in the instantaneous envelope is given by the distances between the
sinusoidal components. Thus, the lowest frequency in the squared instantaneous
envelope caused by the interaction of the constant-amplitude sinusoids is given
by the minimum distance between two adjacent sinusoids.

A computationally simple approach is to reduce the cross-terms by constrain-
ing the minimum distance between sinusoids and then simply lowpass �lter the
squared instantaneous envelope of the input signal, i.e.

γ2
q (n) = αe2

q(n) ∗ hLP (n) , (22)

where e2
q(n) = x2

q(n) + H{xq(n)}2, α is a positive scaling factor and hLP (n) is
the impulse response of an appropriate lowpass �lter with a stopband frequency
below half the minimum distance between two sinusoids, i.e.

2BW < min
l 6=k

|ωq,l − ωq,k| . (23)

This estimate allows us to �nd a amplitude modulating signal without know-
ing the parameters of the sinusoidal model a priori. This is especially attractive
in the context of matching pursuit [20]. Note that the constraint in equation (23)
is more restrictive than those of theorem 1.

The design of the lowpass �lter is subject to con�icting criteria. On one hand,
we want to have su�cient bandwidth for modeling transients well. On the other,
we want to attenuate the cross-terms while having arbitrarily small spacing in
frequency between adjacent sinusoids. Also these criteria have a time-varying
nature. A suitable �lter which can easily be altered to �t the requirements is
described in [8]. Generally, the consequences of setting the cuto� frequency of the
lowpass �lter too low are more severe than setting it too high. Setting the cuto�
frequency too high causes cross-terms to occur in γq(n), which may result in
degradation in some cases, whereas setting the cuto� frequency too low reduces
the models ability to handle transients.

An alternative approach in �nding γq(n) would be to estimate the amplitude
modulating signals of the individual sinusoids and then combine these according
to frequency bands or sources.

5 Results and Discussion

The framework in section 3 has been veri�ed in simulations to attain perfect
reconstruction. The choice of model, whether it is some derivative of the sum



of amplitude modulated sinusoids or the amplitude modulated sum of sinusoids,
should re�ect signal characteristics. Types of sinusoidal signals that can be ef-
�ciently modeled using a one-band amplitude modulated sum of sinusoids are
single sources that have a quasi-harmonic structure, i.e. pitched sounds. For ex-
ample, voiced speech can be modeled well using such a model. In �gure 1 two
examples of onsets of voiced speech are shown (sampled at 8kHz) with the orig-
inals at the top, modeled without AM in the middle, and with at the bottom.
The fundamental frequency was found using a correlation-based algorithm and
the amplitudes and phases were then estimated using weighted least-squares.
Segments of size 20ms and overlap-add with 50% overlap was used.

0 5 10 15 20
−0.1

0

0.1

0 5 10 15 20
−0.1

0

0.1

A
m

pl
itu

de

0 5 10 15 20
−0.1

0

0.1

Time [ms]

0 5 10 15 20
−0.1

0

0.1

0 5 10 15 20
−0.1

0

0.1

A
m

pl
itu

de

0 5 10 15 20
−0.1

0

0.1

Time [ms]

Fig. 1. Signal examples: voiced speech. Original (top), modeled without AM (middle) and with AM
(bottom)

It can be seen that the pre-echo artifacts present in the constant-amplitude
model are clearly reduced by the use of the AM scheme. The proposed model
and estimation technique was found to consistently improve performance of the
harmonic sinusoidal model in transient speech segments with pre-echo artifacts
clearly being reduced.

More complex signals composed of multiple temporally overlapping sources,
however, require more sophisticated approaches for handling non-stationarities.
The glockenspiel of SQAM [21] is such a signal. At �rst glance this signal seems
well suited for modeling using a sinusoidal model. The onsets are, however, ex-
tremely di�cult to model accurately using a sinusoidal model. This is illustrated
in �gure 2, again with the original at the top, modeled using constant amplitude
sinusoids in the middle and using AM at the bottom. The signal on the left is
the entire signal and the signal on the right is a magni�cation of a transition
region between notes. In this case amplitude modulation is applied per equiva-
lent rectangular bandwidth (ERB) (see [19]) and a simple matching pursuit-like
algorithm was used for �nding sinusoidal model parameters, i.e. no harmonic
constraints on the frequencies. Again overlap-add using segments of 20ms and
50% overlap was employed. In this example the sampling frequency was 44.1kHz.
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Fig. 2. Signal examples: glockenspiel. Original (top), modeled without AM (middle) and with AM
(bottom)

It can be seen that the onsets are smeared when employing constant ampli-
tude and that there is a signi�cant improvement when AM is applied, although
some smearing of the transition still occurs due to the �ltering.

6 Conclusion

In this paper we have explored the notion of amplitude modulated sinusoidal
models. First, a general perfect reconstruction framework based on a �lterbank
was introduced, and di�erent options with respect to modulation and their phys-
ical interpretations were presented. Here, one sinusoid per subband is used and
everything else in the subband is then modeled as modulation of that sinusoid.
This model is generally applicable and can be used for modeling not only tonal
signals but also noise-like signals such as unvoiced speech. Then a physically
meaningful, compact representation for sinusoidal audio coding and modeling
and a demodulation scheme with low computational complexity was presented.
In this model, each subband is represented using a sum of sinusoids having one
common real, non-negative modulating signal, which is estimated by lowpass
�ltering the squared instantaneous envelope. The model and the proposed es-
timation technique was found to be suitable for modeling of onsets of pitched
sounds and was veri�ed to generally improve modeling performance of sinusoidal
models.
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