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ABSTRACT
We present a new design method for robust low-delay coding of
auto-regressive (AR) sources for transmission across erasure chan-
nels. The method is based on Linear Predictive Coding (LPC) with
Kalman estimation at the decoder. The method designs the encoder
and decoder offline through an iterative algorithm based on min-
imization of the trace of the decoder state error covariance. The
design method applies to stationary AR sources of any order. Simu-
lation results show considerable performance gains, when the trans-
mitted quantized prediction errors are subject to loss, in terms of
Signal-to-Noise Ratio (SNR) compared to the same coding frame-
work optimized for no loss. We furthermore investigate the impact
on decoding performance when channel losses are correlated. We
find that the method still provides substantial improvements in this
case despite being designed for i.i.d. losses.

1. INTRODUCTION

In transmission of real-time signals data losses are typically an
unavoidable impairment. Transmission can be protected against
losses by, e.g., error correcting codes or Multiple Description Cod-
ing (MDC), or the effects of losses on the transmitted signal may
be mitigated through various loss concealment techniques at the re-
ceiver. For low-delay coding applications, error-correcting codes
are impractical due to the delay they impose. In such cases, another
possibility is to modify the source coding itself to increase robust-
ness against losses.

Linear Predictive Coding (LPC) is a principle commonly em-
ployed in speech applications. Differential Pulse Code Modulation
(DPCM) is an example of a predictive source coding scheme [11].
Kalman filtering can be applied in predictive coding to provide Min-
imum Mean-Squared Error (MMSE) estimation of the source sig-
nal. Previous applications of Kalman filtering to predictive coding
employ Kalman filters at both encoder and decoder and transmit
quantized Kalman innovations from encoder to decoder, requiring
synchronized encoders and decoders [10, 6, 12, 1].

When considering a Kalman filter-based decoder, the work in
[12] applies to optimizing the Kalman filter for given noise statistics
by selecting the optimal measurement vector that minimizes some
measure on the a posteriori state error covariance. However, this
approach does not take channel losses into account. Handling of lost
measurements in a Kalman estimator is investigated thoroughly in
[14, 13], but this work does not consider optimization of the coding
system for such losses.

An approach for optimization of a predictive quantization
scheme employing Kalman-like filters at encoder and decoder is
presented in [7] where channel losses are modeled by a Markov
model. [7] is contemporaneous work with a different philosophy
than what we present here; it presents an optimization method based
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on Jump Linear System (JLS) modeling and Linear Matrix Inequal-
ity (LMI)-constrained convex optimization to design fixed gains for
the encoder and decoder filters for each channel state.

In [3], we present a novel optimization method for the design
of low-delay predictive coding systems, demonstrating a method
for designing a robust encoder and decoder for given channel loss
statistics. In particular, we examine DPCM, which is a canonical
method of predictive coding which captures the basic problems of
real-time transmission over channels with packet loss. In contrast
to other efforts to design robust DPCM methods (e.g., [5, 7]), we
consider a generalized DPCM encoder structure with separate pre-
diction and noise feedback filters, an encoding structure commonly
employed in speech coding. Moreover, we consider the case where
these encoder filters are fixed time-invariant filters, leading to low-
complexity quantization of signal samples. This encoder transmits
quantization information (related to quantized prediction errors)
that is subject to channel loss/erasure. The decoder views the re-
ceived information from the encoder as noisy signal measurements,
and utilizes Kalman filtering principles to perform Linear Minimum
Mean-Squared Error (LMMSE) estimation of the signal. This ap-
proach of viewing the encoder as producing noisy measurements
is in contrast to previous approaches in [10, 6, 12, 1], in which the
encoder’s transmitted quantized prediction error is viewed as the in-
novation, with both the encoder and decoder running synchronized
Kalman filters.

Our predictive coding scheme consists of both offline and on-
line stages. In the offline stage, the fixed encoder filters, and the cor-
responding Kalman measurement vector at the decoder are jointly
designed, taking into account both the quantization noise and chan-
nel loss statistics. In the online operation, the decoder’s time-
varying Kalman filter estimates each signal sample, taking into ac-
count the individual loss events in the estimation. Since the encoder
remains fixed while the decoder is time-varying, synchronization
between encoder and decoder is not assumed. Simulation results
in [3] demonstrate the efficacy of the proposed method.

In this paper we present further results investigating the perfor-
mance of the proposed design method. In addition to the i.i.d. losses
considered in [3], we investigate performance under Gilbert-Elliot
correlated losses to assess how the method handles under more de-
manding loss conditions than it was intended for. We show that al-
though overall performance of the coding framework is degraded by
correlated erasures, compared to i.i.d erasures, our design method
still provides significant improvements compared to the same cod-
ing framework optimized for no loss.

To illustrate the application of our design method, we employ a
coding framework based on generalized DPCM coding. We chose
DPCM as this captures the essence of low delay predictive coding.
The principle can be extended to more complex coding schemes
as well, for example based on vector quantization of LSFs (Line
Spectral Frequencies) or other methods.

2. CODING FRAMEWORK AND DESIGN METHOD

This section describes the source encoder and decoder in Sec-
tions 2.1 and 2.2. The optimization for sample losses is treated
in Section 2.3.
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Figure 1: Generalized DPCM source encoder with Additive White
Noise (AWN) quantizer model and de-correlated quantization noise
feedback.

2.1 Source Encoder
The encoder chosen to illustrate the application of our design
method is based on generalized DPCM coding. We consider an
encoder with a noise shaping structure illustrated in Figure 1, [4].
The source signal and the encoder are defined by (1)–(4).

sn =
N

∑
i=1

αisn−i + rn, (1)

dn = en− q̄n, (2)

en = sn−
p

∑
i=1

aisn−i, (3)

q̄n =
f

∑
i=1

biqn−i (4)

The source process of order N is driven by zero-mean stationary
white Gaussian noise r; αi are the source auto-regressive (AR) co-
efficients, defining the source process together with N; en is the
prediction error; q̄n is the filtered quantization noise feedback; dn is
the input to the quantizer; qn is the additive quantization error; p is
the predictor order and ai, i = 1, . . . , p are its coefficients; f is the
noise feedback filter order and bi, i = 1, . . . , f are its coefficients.
Please note that the encoder definition allows p 6= f 6= N in general.

As depicted in Figure 1, the output transmitted to the decoder is
quantization indices, jn, for the quantized prediction error, zn, in (5),
seen as the Kalman measurement by the decoder, cf. Section 2.2.

zn = Q(dn) (5)

We use scalar quantization Q(·) with a gain-plus-additive-noise
model [11]. The model accommodates correlation between quan-
tizer input and quantization noise.

zn = ρdn +qn, (6)

where ρ ∈ [0,1], and qn is a stationary zero-mean white Gaussian
noise, independent of dn, with variance

σ
2
q = k var{dn} , (7)

where the quantization noise is modeled with a variance propor-
tional, by a constant k, to the variance of the input to the quantizer.
The assumption of Gaussian qn is a simplifying assumption in the
sense that quantization noise is generally not Gaussian and only
approximately white under high-rate assumptions [9]. In order to
be able to model the quantization noise as measurement noise in
the Kalman filter in the decoder and to facilitate quantizer design,
this noise must be white Gaussian. Since qn is not truly Gaussian,
the decoder Kalman filter will not provide MMSE estimation of the
source signal. The Kalman filter will however be the best linear es-
timator of the source signal–LMMSE-optimal. ρ and k are given by
the coding loss, β , of the quantizer:

ρ = 1−β k = β (1−β ), (8)

where β is the inverse of the quantizer coding gain [9].
The noise incurred by quantization is

q̃n = zn−dn = (ρ−1)dn +qn. (9)

In order to simplify the calculation of quantizer input variance in
the optimization of the encoder, we wish to feed back a white
noise component. Therefore, dn is scaled by ρ in the quantization
noise feedback to de-correlate the noise feedback from dn. Thus,
we only feed back the uncorrelated part of the quantization noise
qn = zn−ρdn. This allows us to model the input to the quantizer,
dn, as Gaussian which simplifies the optimization of the encoder
and the quantizer design. See [3] for design of quantizers used in
the encoder.

2.2 Kalman Filter-Based Decoder
The decoder is based on Kalman filtering, i.e., LMMSE estimation
of the source signal s. The Kalman filter at the decoder estimates
the source signal based on measurements, z, reconstructed from the
received quantization indices, jn. In order to derive the Kalman
estimator ŝn of sn, the source process and encoder equations are
modeled by a state space model of the form given in, e.g., [2]. The
state transition equation is chosen to represent the evolution of the
source signal sn as well as the states of the encoder filters P and F .
The measurement equation represents the filtering and quantization
operations of the encoder.

The decoder is based on the state-space model in (10) and (11).

xn+1 = Fxn +Gwn (10)

zn = hTxn +qn, (11)

where the state xn is defined as

xn = [ sn sn−1 · · · sn−p qn−1 · · · qn− f ]T , (12)

and the state transition matrix F is defined as

F =


α1×N 01×(p+1−N)
Ip 0p×1

0(p+1)× f

0 f×(p+1)
01× f

I( f−1) 0( f−1)×1

 ,

(13)
where α = [α1 · · ·αN ] are the coefficients of the source AR process,
Ix are x× x identity matrices, and 0 are all-zero matrices (the sub-
scripts in (13) denote the dimensions of the individual components).
Thus, the top-left part of F represents the AR filtering of the pro-
cess noise, given by (1), generating the source signal, and shifts past
source signal samples through the state. The bottom-right part of F
simply shifts previous quantization noise samples through the state.
Note that this formulation allows p≥ N−1 and f ≥ 0.

The process noise wn is defined as

wn = [ rn qn ]T , (14)

which is stationary zero-mean white Gaussian with

Q = cov{wn,wn}=
[

var{rn} 0
0 var{qn}

]
(15)

The first (scalar) component of the process noise, rn, models the
source signal excitation and the second (scalar) component, qn,
models the quantization noise fed back to the filter F . The defini-
tion (14) introduces correlation between the process noise wn and
the measurement noise qn in (11) as follows

S = cov{wn,qn}= E
{[

rn
qn

]
qn

}
=
[

0
R

]
, (16)



where R = σ2
q is a scalar since we consider scalar-valued measure-

ments zn. We use a formulation of the Kalman filter which takes the
covariance S into account.

The matrix G is a transform to allow the process noise wn to
be defined in a compact form. G is given by (17).

G =
[

1
02×p

0 02×( f−1)0 1

]T
(17)

The measurement vector h represents the filtering operations of
the encoder as well as the scaling in the model of the quantizer

h = ρh̃, (18)

where h̃ contains the coefficients of the prediction error and noise
feedback filters

h̃ = [ 1 −a1 · · · −ap −b1 · · · −b f ]T , (19)

such that by (2),
dn = h̃Txn, (20)

whereby (11) follows from (6). To summarize, h̃ represents the
filtering in the encoder before quantization. Due to the quantization
noise model presented in Section 2.1, h represents the filtering after
quantization and produces the measurement seen by the decoder.

The decoder receives information (quantization indices jn) to
build measurements zn from the encoder.

Considering the situation where zn may be lost, we have a time-
varying Kalman filter. The measurement vector hn and measure-
ment noise covariance Rn are time-varying. This models the possi-
ble loss of measurements at the decoder.

hn = γnh (21)

Rn = γnR +(1− γn)σ
2I, (22)

where γn are outcomes of a random stationary Bernoulli process
modeling measurement arrival with arrival probability Pr{γn = 1}=
γ̄ and loss probability Pr{γn = 0} = 1− γ̄ . R is the measurement
noise covariance in the case of no loss and σ2I is the measurement
noise covariance in the case of loss. We let σ2→ ∞ in (22), repre-
senting infinite uncertainty about the measurement zn when it is lost
in transmission. See [14] for an example of this approach. Replac-
ing Rn and hn by (21) and (22) in the Kalman filter, as found in,
e.g., [2], and taking lim

σ→∞
, we obtain

x̂n = x̂−n + γnP
−
n h
(
hTP−n h +R

)−1(
zn−hTx̂−n

)
(23)

Pn = P−n − γnP
−
n h
(
hTP−n h +R

)−1
hTP−n (24)

x̂−n+1 =
(
F− γnGSR−1hT

)
x̂n + γnGSR−1zn (25)

P−n+1 =
(
F− γnGSR−1hT

)
Pn

(
F− γnGSR−1hT

)T

+G
(
Q− γnSR−1ST

)
GT, (26)

The decoded signal ŝn is the first element of x̂n according to (12).
We see that the encoder takes the individual channel erasures/losses
into account, represented by γn = 0. This effectively reduces the
current estimate of the state x̂n to the a priori estimate x̂−n in case
of erasure of jn, i.e., a prediction from past observations.

2.3 Encoder and Decoder Design
One could choose to calculate filter parameters/measurement vec-
tors h∗n at each time step n to improve decoding performance at
the next time step n + 1. However, this approach would require
loss-less feedback of observed arrivals γn from decoder to encoder

before time n + 1 in order to be able to calculate identical param-
eters at encoder and decoder. In order not to impose this loss-less
near-instantaneous feedback requirement on the system, we seek a
method that allows offline calculation of a constant h∗, given the
statistics of loss. So, the goal is a method that improves decoding
performance under average loss conditions rather than the specific
loss outcomes. The offline calculation of h∗ furthermore decreases
the computational complexity of the framework since the calcula-
tion can be performed once in stead of being performed at each time
step n. In contrast to Kalman filtering without loss, Pn is stochas-
tic here due to measurement losses (the random variable γn). We
propose the following offline method for designing measurement
vectors for improved performance under sample losses. We use a
simplified approach where the philosophy is to obtain a h∗ mini-
mizing the expectation of Pn over current loss, γn, at time n.

h∗ = argmin
h

Tr
[
Eγn {Pn}

]
, (27)

where Pn is given in (24)
Similar to [12], we express the measurement noise covariance–

or equivalently, quantization noise variance–R as a function of h
as given in Proposition 2.1.

Proposition 2.1.

R(i) =
k

ρ2 hT
(i)Rxx,(i)h(i), (28)

where Rxx,(i) is the state correlation matrix, with the structure

Rxx,(i) =
[

Rss 0
0 I f R(i−1)

]
. (29)

Proof. We refer to [3] for further details.

The index (i) in Proposition 2.1 and following equations de-
notes the quantity calculated at iteration i. Using Proposition 2.1
and taking the expectation of (24) gives

Eγ

{
P(i)

}
= Eγ

{
P−(i)

}
− γ̄

Eγ

{
P−(i)

}
hhT Eγ

{
P−(i)

}
hT
(

Eγ

{
P−(i)

}
+ k

ρ2 Rxx,(i)

)
h

,

(30)
where γ̄ is the arrival probability. The inverse in (24) corresponds to
scalar division, because we have scalar measurements. Time index
n has been omitted, the index (i) indicates iteration number.

P−n is updated according to the discrete-time Riccati equation,
[2, p. 108], of the decoder Kalman filter, adapted for measurement
losses, the expectation of which is given in Proposition 2.2.

Proposition 2.2.

Eγ

{
P−(i)

}
= F Eγ

{
P−(i−1)

}
FT

− γ̄

(
F Eγ

{
P−(i−1)

}
h +GS

)(
F Eγ

{
P−(i−1)

}
h +GS

)T

hT
(

Eγ

{
P−(i−1)

}
+ k

ρ2 Rxx,(i)

)
h

+GQGT. (31)

Proof. We refer to [3] for further details.

This requires the arrival probability γ̄ to be known in order to
design the encoder and decoder.

At each iteration i, h(i) is selected to minimize the trace of (30)
according to (32).

h(i) = argmax
h

hT
(

Eγ

{
P−(i)

})2
h

hT
(

Eγ

{
P−(i)

}
+ k

ρ2 Rxx,(i)

)
h

, (32)



Algorithm 1 Design algorithm for lossy transmission.

h(0): al = bl = αl , l ≤ N, al = 0, N < l ≤ p, bl = 0, N < l ≤ f
Initialize Eγ{P−(1)} to unique stabilizing solution to (26) for h = h0 and
γn = 1.
Set ε to desired precision; i = 0; stop difference = ∞

while stop difference > ε do
Set i = i+1
Minimize Eγ{P(i)} by (33)
Calculate h∗(i) by (34)

Calculate Eγ{P−(i+1)} by (31)

Set stop difference =
∣∣∣Tr
[
Eγ{P−(i+1)}−Eγ{P−(i)}

]∣∣∣
end while
Select h∗ as h∗(i)

in which (Eγ{P−(i)})
2 is short for Eγ{P−(i)}

T Eγ{P−(i)} since P−(i) is
symmetric.

Equation (32) may be rewritten as a Rayleigh quotient through
a Cholesky factorization LLT = Eγ{P−(i)}+

k
ρ2 Rxx,(i) where L is

a lower triangular matrix. This allows us to obtain h(i) as outlined
in Proposition 2.3.

Proposition 2.3.

y∗(i) = argmax
y

yTL−1
(

Eγ

{
P−(i)

})2
L−Ty

yTy
, (33)

is given as the eigenvector of L−1(Eγ{P−(i)})
2L−T corresponding

to its largest eigenvalue [12]. We obtain the measurement vector
from y∗(i) given by (33) with a normalization by the first element of
the vector in order to keep h(i) as formulated in (19), with its first
element equal to 1.

h̃(i) =
L−Ty∗(i)

c
h(i) = ρh̃(i), (34)

where c is the first element of the vector L−Ty∗(i).

Proof. We refer to [3] for further details.

Equations (31), (33) and (34) are iterated until convergence
of (31), upon which the resulting h(i) is chosen as fixed measure-
ment vector h∗ for the decoder given by (23)–(26) and the corre-
sponding h̃∗ for the encoder given by the relation (18). The design
method is summarized in Algorithm 1.

3. SIMULATIONS

In [3] we present examples of decoded Signal-to-Noise Ratio (SNR)
performance gains achieved by the design presented in Section 2.3.
In this paper we present additional simulation results for a source
process with a somewhat different power spectral shape than the
examples in [3].
• A stationary random source signal was generated from an

AR(10) process. The source signal was encoded with encoder
and decoder designed for each simulated arrival probability γ̄ .
The quantization indices with losses were decoded using the
Kalman decoder given by (23)–(26). This setup is referred to
as “Iterative Measurement Vector Improvement (IMVI)”.

• As a baseline for comparison, the same source signal was en-
coded and decoded with encoder and decoder designed for no
loss (γ̄ = 0). We shall denote this baseline method “Baseline”.

Sample arrivals γn were simulated as:

• Independent identically distributed arrivals, modeled as out-
comes of a Bernoulli random process over a series of arrival
probabilities γ̄ ∈ [0,1] and applied to the transmitted encoder
quantization indices jn. This loss process is referred to as “i.i.d”
in the following.

• Outcomes of a Gilbert-Elliot loss process simulated as a two-
state Markov process where state 1 corresponds to loss (γn =
0) and state 2 to correct arrival (γn = 1). The state transition
probabilities are

p1,1 = 1− p1,2 = λ1 (35)

p2,1 = 1− p2,2 = λ2. (36)

The loss model will remain in the loss state for exponentially
distributed times with mean error burst length 1/(1−λ1). The
stationary distribution of the Markov chain is

q1 = 1−q2 =
λ2

1−λ1 +λ2
, (37)

where q2, the probability of being in the no-loss state, corre-
sponds to the overall arrival probability γ̄ in the filter design
algorithm of Section 2.3. We refer to loss processes of this type
as “GE-2” and “GE-3” for mean error burst lengths of 2 and 3,
respectively.

Algorithm 1 is designed for i.i.d. losses only, but we include cor-
related losses in the simulations to assess the algorithm’s perfor-
mance under more difficult loss conditions. The simulations have
been conducted for a Lloyd-Max quantizer at 2 bits/sample.

Test data were generated from an AR model estimated from a
20ms sub-sequence selected from a voice-active region of speech
found in [8]. The coefficients used were: α1 = 0.8694, α2 =
−0.4616, α3 = 0.0186, α4 = 0.4603, α5 =−0.2236, α6 = 0.0302,
α7 = 0.1843, α8 = −0.1721, α9 = 0.0239, α10 = −0.2115. The
power spectrum of the source AR process is plotted in Figure 2.
Decoded signal SNR is compared for IMVI and Baseline in Fig-
ure 3 for a range of loss probabilities.

0 Fs/2
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Figure 2: Power spectral density of 10th order AR source signal.

Figure 3 first and foremost shows how IMVI is capable of im-
proving decoded signal SNR over the coding framework, Baseline,
which has not been optimized for loss. In all three loss scenarios,
IMVI improves SNR by, at best, 1.1dB to 2.0dB with most notable
improvements above 5% loss rate. The plots show that the improve-
ment obtained by our method is degraded as the losses become cor-
related; in the i.i.d. loss scenario, we observe improvements of up to
2.0dB (appr. 23% loss rate); in the GE-2 scenario, we observe im-
provements of up to 1.5dB (appr. 34% loss rate); in the GE-3 sce-
nario, we observe improvements of up to 1.1dB (appr. 34% to 48%
loss rate). This indicates that the design algorithm is still effective
at correlated loss scenarios, although not intended for such losses,
but performance improvements are more modest in these cases.

3.1 Parameter Validation
We evaluate the correspondence between the expected state error
covariance Eγn {Pn} used in (27) and the empirical average over ac-
tual observed Pn in the running decoder, denoted avg(Pn). This is
done to validate that the optimization objective used in Algorithm 1
is reasonable.
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Figure 3: Decoded signal SNR for 10th order AR source signal.
Plot (b) shows the marked segment of plot (a) enlarged.

We investigate Tr [Pn] since the diagonal elements are the er-
ror variances of the estimated state elements. These relate directly
to the SNR of the decoded signal. The resulting Tr

[
Eγn {Pn}

]
from Algorithm 1 is compared to Tr [avg(Pn)] observed at the de-
coder and averaged over 105 samples. We compared the measured
quantities at a loss rate of 1− γ̄ = 0.2336:

Tr
[
Eγn {Pn}

]
= 7.3266 (38)

Tr [avg(Pn)]i.i.d. = 6.7400 (39)
Tr [avg(Pn)]GE-2 = 7.5081 (40)
Tr [avg(Pn)]GE-3 = 7.9330 (41)

From (38) and (39) we observe that Algorithm 1 seems to over-
estimate the state error covariance in this example. From (38), (40)
and (41) it is observed that Algorithm 1 apparently under-estimates
the state error covariance in the case of correlated losses in this ex-
ample. This could explain the smaller improvement obtained by the
algorithm under correlated losses. At the same time it seems that
over-estimating the state error covariance (the i.i.d. case) does not
have as large an impact on the resulting improvement.

4. CONCLUSION

We have presented a novel method for optimization of predictive
quantization of AR signals for transmission across erasure chan-
nels. An important contribution of the presented method is a coding
framework “design philosophy” that considers the encoding a pro-
cess that produces noisy measurements of the source signal. The
decoding is viewed as optimal linear estimation of the source signal
based on these measurements.

The proposed method provides offline design of the encoder
and decoder. By taking channel erasures into account in minimiz-
ing the trace of the Kalman state error covariance, we have obtained
a design method that allows selection of encoder and decoder pa-
rameters which improve robustness to losses in a framework that

provides LMMSE estimation given the received measurements at
the decoder.

We point out that the presented design method can be applied
to predictive coding systems in general and is not limited to the
particular framework presented in this paper.

The presented method has been demonstrated to improve de-
coded signal SNR substantially under sample erasure conditions for
a diverse selection of source signal models [3]. In this paper, we
present results for another signal model in addition to the exam-
ples in [3] and for correlated channel erasures. These results show
that the presented method is capable of improving decoded signal
quality substantially under loss conditions when losses become cor-
related, despite the fact that the method is designed for i.i.d. losses.

In the presented example, the design method calculates a larger
expected state error covariance than what is observed in the actual
decoder; i.e. the encoder and decoder are designed somewhat con-
servatively, corresponding to a slightly higher loss rate than the ac-
tual rate. This indicates room for additional improvements if this
behaviour generalizes to other signal models.
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