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On Predictive Coding for Erasure Channels Using a
Kalman Framework

Thomas Arildsen*, Manohar N. Murthi, Søren Vang Andersen, and Søren Holdt Jensen

Abstract—We present a new design method for robust low-
delay coding of auto-regressive (AR) sources for transmission
across erasure channels. It is a fundamental rethinking of existing
concepts. It considers the encoder a mechanism that produces
signal measurements from which the decoder estimates the
original signal. The method is based on Linear Predictive Coding
(LPC) and Kalman estimation at the decoder. We employ a novel
encoder state-space representation with a linear quantization
noise model. The encoder is represented by the Kalman measure-
ment at the decoder. The presented method designs the encoder
and decoder offline through an iterative algorithm based on
closed-form minimization of the trace of the decoder state error
covariance. The design method is shown to provide considerable
performance gains, when the transmitted quantized prediction
errors are subject to loss, in terms of Signal-to-Noise Ratio
(SNR) compared to the same coding framework optimized for no
loss. The design method applies to stationary AR sources of any
order. We demonstrate the method in a framework based on a
generalized Differential Pulse Code Modulation (DPCM) encoder.
The presented principles can be applied to more complicated
coding systems that incorporate predictive coding as well.

Index Terms—Linear predictive coding, differential pulse code
modulation, Kalman filtering, joint source-channel coding, era-
sure channels, quantization.

I. INTRODUCTION

IN transmission of real-time signals data losses are typically
an unavoidable impairment. The real-time constraint makes

it necessary to consider data with a high transmission delay
lost. This delay can for example occur as a result of network
congestion. On other types of lossy channels such as wireless
links, the real-time constraint makes it impractical to retrans-
mit lost data. Transmission can be protected against losses by,
e.g., error correcting codes or Multiple Description Coding
(MDC), or the effects of losses on the transmitted signal may
be mitigated through various loss concealment techniques at
the receiver [1]–[3]. For low-delay coding applications, error-
correcting codes are impractical due to the delay they impose.
In such cases, another possibility is to modify the source
coding itself to increase robustness against losses.

Linear Predictive Coding (LPC) has been widely used for
source coding, especially speech coding, for a long time.
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It is one of several source coding techniques in standards
used in Voice over IP (VoIP) and is widely used in several
mobile phone standards [4]–[10]. LPC works well for signals
with temporal correlation where it exploits this correlation to
compress the source signal. In a typical LPC source coding
system, the predictor in the encoder is an all-zero filter that
ideally assumes that the source signal is the outcome of an
auto-regressive (AR) process, in which case the predictor can
perfectly whiten the source signal. In the decoder, the source
signal is reconstructed from the whitened prediction residual.

The predictor in an LPC source coding system is typically
determined by modeling the source signal as the outcome of
an AR process for which the coefficients are estimated. The
predictor can be chosen to match these estimated AR coeffi-
cients, i.e., the coefficients of the prediction filter are equal to
the coefficients of the source AR process. This is in general
not optimal when the prediction residual is affected by noise,
e.g., quantization or channel noise, and better performance can
be achieved with a mis-matched predictor [11], [12].

Differential Pulse Code Modulation (DPCM) is an example
of a predictive source coding scheme which includes feedback
of quantization noise in the coding of the source signal [13].
Kalman filtering can be applied in predictive coding to provide
Minimum Mean-Squared Error (MMSE) estimation of the
source signal. Previous applications of Kalman filtering to
predictive coding employ Kalman filters at both the encoder
and decoder and transmit quantized Kalman innovations from
encoder to decoder [14]–[18].

The effect of channel errors on DPCM performance has
been investigated for transmission across ATM networks in
[19]. The authors investigate optimization of the predictor for
channel losses in a first order DPCM system, but provide no
optimization results for higher order coding systems.

When considering a Kalman filter-based decoder, the work
in [16], [20] applies to optimizing the Kalman filter for given
noise statistics by selecting the optimal measurement vector
that minimizes some measure on the a posteriori state error
covariance. However, this approach does not take channel
losses into account.

The handling of lost measurements in a Kalman estimator
is investigated thoroughly in [21], [22], but this work does not
consider optimization of a coding system for such losses.

An approach for optimization of a predictive quantization
scheme employing Kalman-like filters at encoder and decoder
is presented in [23], [24] where channel losses are modeled
by a Markov model. [24] is contemporaneous work with a
different philosophy; it presents an optimization method based
on Jump Linear System (JLS) modeling and Linear Matrix
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Inequality (LMI)-constrained convex optimization to design
fixed gains for the encoder and decoder filters for each channel
state. This approach reduces computational complexity by
restricting the decoder to account only for present channel
loss through a JLS-based decoder that switches between the
states of the channel loss model.

In this paper, we present a novel optimization method for the
design of low-delay predictive coding systems, demonstrating
a method for designing a robust encoder and decoder for
given loss statistics. In particular, we examine DPCM, which
is a canonical method of predictive coding which captures
the basic problems of real-time transmission over channels
with packet loss. In contrast to other efforts to design robust
DPCM methods (e.g., [19], [24]), we consider a generalized
DPCM encoder structure with separate prediction and noise
feedback filters, an encoding structure commonly employed
in speech coding. Moreover, we consider the case where these
encoder filters are fixed time-invariant filters, leading to low-
complexity quantization of signal samples. This encoder trans-
mits quantization information (related to quantized prediction
errors) that is subject to packet loss/erasure. The decoder
views the received information from the encoder as noisy
signal measurements, and utilizes Kalman filtering principles
to perform MMSE estimation of the signal. This approach
of viewing the encoder as producing noisy measurements is
in contrast to previous approaches in [14]–[18], in which the
encoder’s transmitted quantized prediction error is viewed as
the innovation, with both the encoder and decoder running
synchronized Kalman filters.

Our predictive coding scheme consists of both offline and
online stages. In the offline stage, the fixed encoder filters,
and the initial Kalman measurement filter at the decoder are
jointly designed, taking into account both the quantization
noise and packet loss statistics. In the online operation, the
decoder’s Kalman filter parameters are updated with each
received or lost packet, taking into account the particular
loss outcome sequence in the MMSE estimation. Since the
encoder remains fixed while the decoder is time-varying,
synchronization between encoder and decoder is not assumed.
Simulation results demonstrate the efficacy of the proposed
method. This low-delay predictive coding design approach can
be extended beyond DPCM and to the robust transmission
of vector data, such as Line Spectral Frequencies. Therefore,
this paper presents a re-thinking of fundamental concepts,
and presents a new design method that can be employed in
different coding application contexts.

The system model used to illustrate the application of
our method and the actual design method are presented
in Section II. Section III contains descriptions of simulations
conducted to evaluate the performance of the method and
results of the simulations showing substantial improvements
of the presented method over coding without optimization
for loss. Finally, Section IV discusses the implications of the
proposed method and the simulation results.

II. CODING FRAMEWORK AND DESIGN METHOD

This section describes the source encoder and decoder
in Sections II-A and II-B. The optimization for sample losses
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Fig. 1. Generalized DPCM source encoder model with AWN quantizer model
and de-correlated quantization noise feedback.

is treated in Section II-B4. The coding framework is summa-
rized in Section II-D. We provide an overview comparison to
the method from [24] in Section II-E.

A. Source Encoder

The source encoder chosen to illustrate the application of
our design method is based on generalized DPCM coding. We
consider an encoder with the noise shaping structure illustrated
in Fig. 1 as given in [25], [26]. Fig. 1 includes the quantization
noise model described in Section II-A1.

The encoder codes the source signal s. The source signal
is modeled as outcomes of a stationary AR process

sn =
N∑

i=1

αisn−i + rn, (1)

of order N , driven by zero-mean stationary white Gaussian
noise r; the αi are the source AR coefficients, defining the
source process together with N .

The encoder has prediction filter P independent from the
quantization noise feedback filter F . The structure depicted
in Fig. 1 is equivalent to a classic DPCM encoder, as described
in e.g. [13], when P (z) = F (z) and ρ = 1.

The input to the quantizer, dn, is given by

dn = en − q̄n, (2)

en = sn −
p∑

i=1

aisn−i, (3)

q̄n =

f∑

i=1

biqn−i. (4)

Note that en is the prediction error, q̄n is the filtered quantiza-
tion noise feedback, dn is the input to the quantizer, and q̃n is
the quantization error; p is the predictor order; ai, i = 1, . . . , p
are the predictor coefficients; f is the noise feedback filter
order and bi, i = 1, . . . , f are the noise feedback filter
coefficients. In this work, p = f = N .

1) Linear Quantizer Model: As depicted in Fig. 1, the
output transmitted to the decoder is quantization indices, j,
for the quantized prediction error, zn, in (5). As explained
in Section II-B, zn is seen as the Kalman measurement by the
decoder,

zn = Q(dn) (5)
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We use scalar quantization Q(·) with a gain-plus-additive-
noise model [13]. The model accommodates correlation be-
tween quantizer input and quantization noise. In fact,

zn = ρdn + qn, (6)

where ρ ∈ [0, 1], and qn is a stationary zero-mean white
Gaussian noise, independent of dn, with variance

σ2
q = k var {dn} , (7)

where the quantization noise is modeled with a variance
proportional, by a constant k, to the variance of the input
to the quantizer, dn. The assumption of white Gaussian qn is
a simplifying assumption in the sense that quantization noise
is generally not Gaussian and only approximately white under
high-rate assumptions [27], [28]. In order to be able to model
the quantization noise as measurement noise in the Kalman
filter in the decoder, this noise must be white Gaussian.
There are techniques for handling non-Gaussian measurement
noise in a Kalman filter, see [29]–[31], alternatively, a non-
linear measurement model could be accommodated by the
Extended Kalman Filter (EKF) [32]. Nevertheless, we retain
the Gaussian assumption in order to keep the Kalman filter of
the standard form. This is to avoid non-linear modifications
to the covariance updates of the Kalman filter and facilitate
the inclusion of the noise model in the optimization approach
presented in Section II-B4. Note that ρ and k are given by the
coding loss, β, of the quantizer:

ρ = 1− β k = β(1− β). (8)

Note that β is the inverse of the quantizer coding gain [28].
The noise incurred by quantization is

q̃n = zn − dn = (ρ− 1)dn + qn. (9)

In order to simplify the calculation of quantizer input variance
in the optimization of the encoder, we wish to feed back a
white noise component. Therefore, dn is scaled by ρ in the
quantization noise feedback to de-correlate the noise feedback
from dn. Thus, we only feed back the uncorrelated part of the
quantization noise qn = zn−ρdn. This allows us to model the
input to the quantizer, dn, as white Gaussian which simplifies
the optimization of the encoder. The design of quantizers for
use in the encoder is treated in Section II-C.

B. Kalman Filter-Based Decoder

The decoder is based on Kalman filtering, i.e., MMSE
estimation of the source signal s. The Kalman filter at the
decoder estimates the source signal based on measurements,
z, reconstructed from the received quantization indices, j,
which may be subject to losses. In order to derive the Kalman
estimator ŝn of sn, the source process and encoder equations
are modeled by a state space model of the form given in, e.g.,
[32]. The state transition equation is chosen to represent the
evolution of the source signal sn as well as the states of the
encoder filters P and F . The measurement equation represents
the filtering and quantization operations of the encoder. So, the
measurements become the quantized prediction error outputs
from the encoder. Note that where our formulation leads to

the quantized prediction error being seen as a Kalman mea-
surement, previous formulations of Kalman predictive coding
have mapped this quantity to the Kalman innovation [14]–[18].
This difference is instrumental for obtaining the robustness to
packet loss which we will demonstrate in this paper.

The decoder is derived from the state-space model described
below. The process equation is given by (10) and the measure-
ment equation by (11).

xn+1 = Fxn + Gwn (10)

zn = hTxn + qn (11)

The state xn corresponds to the joint states of the signal,
predictor and noise feedback filter.

xn =
[
sn sn−1 · · · sn−p qn−1 · · · qn−f

]T
(12)

The state transition matrix F is defined as follows (the
subscripts in (13) denote the dimensions of the individual
components):

F =




α1×p 0
Ip 0p×1

0(p+1)×f

0f×(p+1)
01×f

I(f−1) 0(f−1)×1


 (13)

where α = [α1 · · ·αp] are the coefficients of the source AR
process, Ix is an x × x identity matrix, and 0 is an all-zero
matrix with the specified dimensions. Thus, the top-left part
of F represents the AR filtering of the process noise, given
by (1), generating the source signal, and shifts past source
signal samples through the state. The bottom-right part of F
delays previous quantization noise samples through the state.

The process noise wn is defined as

wn =
[
rn qn

]T
, (14)

which is a stationary zero-mean white Gaussian process noise
with

Q = cov {wn,wn} =

[
var {rn} 0

0 var {qn}

]
. (15)

Notice that the first component of the process noise, rn, mod-
els the source signal excitation and the second component, qn,
models the quantization noise fed back to the filter F . Clearly,
the definition of the process noise (14) introduces correlation
between the process noise wn and the measurement noise in
the form of qn in (11). The connection between quantization
noise in the state originating from wn, and qn added to the
measurement is captured by including correlation between
process and measurement noise as follows:

S = cov {wn, qn} = E

{[
rn
qn

]
qn

}
=

[
0
R

]
, (16)

where R = σ2
q . As shown later, we use a formulation of the

Kalman filter which takes the covariance S into account. Let
G be a transform to allow the process noise wn to be defined
in a compact form with G given by

G =




1 0
0p×2

0 1
0(f−1)×2


 . (17)
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The measurement vector h represents the filtering opera-
tions of the encoder as well as the scaling in the model of the
quantizer

h = ρh̃, (18)

where h̃ contains the coefficients of the prediction error and
noise feedback filters

h̃ =
[

1 −a1 · · · −ap −b1 · · · −bf
]T

(19)

such that by (2),
dn = h̃Txn, (20)

whereby (11) follows from (6). To summarize, h̃ represents the
filtering in the encoder before quantization. Due to the quan-
tization noise model presented in Section II-A1, h represents
the filtering after quantization and produces the measurements
seen by the decoder when these are not lost.

The state-space model (10) and (11) represents the produc-
tion of the source signal as well as the encoding of it. This
state space model forms the basis of the decoders described
in the following sections. First we describe the decoder and
the design algorithm for the lossless case. Subsequently, we
extend the principles to losses.

1) Lossless Transmission: The decoder receives informa-
tion (quantization indices j) to build measurements zn from
the encoder. In the case of lossless transmission, all mea-
surements are received by the decoder. The decoder in this
case is given by the Kalman filter with correlated process and
measurement noise for the described state space model, (10)
and (11), given in for example [32]

x̂n = x̂−n + P−nh
(
hTP−nh + R

)−1 (
zn − hTx̂−n

)
(21)

Pn = P−n −P−nh
(
hTP−nh + R

)−1
hTP−n

T (22)

x̂−n+1 = F̄x̂n + GSR−1zn (23)

P−n+1 = F̄PnF̄T + GQ̄GT, (24)

in which the following shorthand notation is used:

x̂−n = E {xn|z0, . . . , zn−1} x̂n = E {xn|z0, . . . , zn}
P−n = E

{(
xn − x̂−n

) (
xn − x̂−n

)T}

Pn = E
{

(xn − x̂n) (xn − x̂n)
T
}

F̄ =
(
F −GSR−1hT

)
Q̄ =

(
Q − SR−1ST

)

The decoded source signal ŝn is given as the first element of
x̂n according to (12).

Since the source signal, s, is stationary and the encoder
fixed (constant h), the Kalman filter statistics will converge to
fixed values as n→∞:

lim
n→∞

P−n = P− lim
n→∞

Pn = P. (25)

Correspondingly, we may write the fixed Kalman filter decoder
as in (26)–(28).

x̂n = x̂−n + P−h
(
hTP−h + R

)−1 (
zn − hTx̂−n

)
(26)

x̂−n+1 = F̄x̂n + GSR−1zn (27)

where P− is the solution to the Riccati equation

P− = F̄P−F̄T − F̄P−h
(
hTP−h + R

)−1
hTP−

T
F̄T

+ GQ̄GT (28)

2) Coder Design for Lossless Transmission: Our optimiza-
tion of the coding framework is somewhat similar to the
approach in [16], but [16] does not consider optimization for
sample erasures and the optimization objective has a different
structure. The design of the encoder and decoder consists
of offline selection of the measurement vector h, as this
defines the encoder through (18) and (19) and defines the
decoder through (26)–(28). The method is based on choosing
the measurement vector h∗ to minimize the mean squared
error of the state estimate x̂n at the decoder, at time n given
the a priori state estimate x̂−n and corresponding state error
covariance P−. If we first look at the situation for the lossless
case, described in Section II-B1, the objective is

h∗ = arg min
h

Tr
[
E
{

(xn − x̂n) (xn − x̂n)
T | x̂−n ,P−

}]
,

(29)

which can be written as

h∗ = arg min
h

Tr [P] , (30)

with x̂n, x̂−n , and P− given by (26)–(28), and

P = P− −P−h
(
hTP−h + R

)−1
hTP−

T
. (31)

Note that h∗ and P−, and thereby P, will depend on each
other through (28) and (30): having selected a h∗(1) according1

to (30) for some P−(1), this will yield a new P−(2) by (28) for
h = h∗(1), again resulting in a new h∗(2) by (30). Therefore,
we use an iterative approach, iterating over (28), (30) and (31)
starting from some initial h(0) and P−(1) (to be explained in
the following), iterating until convergence. In the following,
the index i identifies the iteration number.

Similar to [16], we express the measurement noise
covariance–or equivalently, quantization noise variance–R(i)

as a function of h(i). Because our framework models the
encoding as the Kalman measurement and quantization noise
as the measurement noise, R(i) is expressed as follows,
cf. Fig. 1 and (2):

R(i) = k var {d} = kh̃T
(i)Rxx h̃(i)

=
k

ρ2
h(i)Rxx,(i)h(i),

(32)

where Rxx,(i) is the state correlation matrix, which has the
following structure

Rxx,(i) =

[
Rss 0
0 IfR(i−1)

]
. (33)

1We use the subscripts ·(0), ·(1) . . . to label successive iterative calculations
of a quantity.
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Equations (32) and (33) allow reformulation of (31) as

P(i) = P−(i) −
P−(i)h(i)h

T
(i)P

−
(i)

T

hT
(i)

(
P−(i) + k

ρ2 Rxx,(i)

)
h(i)

. (34)

The minimization stated in (30) of the trace of (34) can be
attained by maximizing the trace of its right-most term.

h∗(i) = arg min
x

Tr
[
P−(i)

]

= arg max
h

hTP−(i)
2
h

hT
(
P−(i) + k

ρ2 Rxx,(i)

)
h
, (35)

where P−(i)
2

= P−(i)
T
P−(i) since P−(i) is symmetric. Quanti-

zation noise is now taken into account in (35), through (32).
Equation (35) may be rewritten as a Rayleigh quotient through
a Cholesky factorization of the matrix in the denominator
LLT =

(
P−(i) + k

ρ2 Rxx,(i)

)
where L is a lower triangular

matrix. We define y = LTx such that

hTP−(i)
2
h

hT
(
P−(i) + k

ρ2 Rxx,(i)

)
h

=
yTL−1P−(i)

2
L−Ty

yTy
. (36)

The vector y∗(i) maximizing the right-hand side of (36), i.e.,

y∗(i) = arg max
y

yTL−1P−(i)
2
L−Ty

yTy
, (37)

is given as the eigenvector of L−1P−(i)
2
L−T corresponding to

its largest eigenvalue [16]. Clearly, the fractions in (35) and
(37) are invariant to scaling of x or y, equivalently. As a result,
we may take the measurement vector as given by (37) with
a normalization by the first element of the vector in order to
keep h(i) as formulated in (19), with its first element equal
to 1. Then

h̃∗(i) =
L−Ty∗(i)

c
h∗(i) = ρh̃∗(i), (38)

where c is the first element of the vector L−Ty∗(i). Having
selected h∗(i), P− is updated according to (28):

P−(i+1) = F̄P−(i)F̄
T

− F̄P−(i)h
∗
(i)

(
hT

(i)[∗]P
−
(i)h

∗
(i) + R(i)

)−1

h∗(i)
TP−(i)

T
F̄T

+ GQ̄GT, (39)

where iteration indices have been omitted on the quantities F̄
and Q̄ to simplify the equation. These quantities are however
dependent on h∗(i).

The encoder and decoder are designed by iteratively per-
forming the steps given by (37)–(39). The algorithm is initiated
with initial measurement vector h(0) set to match the source
and P(0) set to the unique stabilizing solution to (28) for
h = h(0). The algorithm is outlined in Table I.

TABLE I
DESIGN ALGORITHM FOR LOSSLESS TRANSMISSION

Initialize h(0): al = bl = αl, ∀l
Initialize P−

(1)
to unique stabilizing solution to (28) for h = h0

Set ε to desired precision and i = 0
Set stop difference =∞
while stop difference > ε do

Set i = i+ 1
Minimize P(i) by (37)
Calculate h∗

(i)
by (38)

Calculate P−
(i+1)

by (39)

Set stop difference = Tr
[
P−

(i)
−P−

(i+1)

]

end while
Select h∗ as h∗

(i)

3) Lossy Transmission: Considering the situation where
measurements zn may be lost, we have a time-varying Kalman
filter. The measurement vector hn and measurement noise
covariance Rn are time-varying. This models the possible loss
of measurements at the decoder. Specifically, we substitute h
and R in (21)–(24) by

hn = γnh (40)

Rn = γnR + (1− γn)σ2I, (41)

where γn are outcomes of a stationary Bernoulli random
process modeling measurement arrival with arrival probability
Pr{γn = 1} = γ̄ and loss probability Pr{γn = 0} = 1 − γ̄.
Note that R is the measurement noise covariance in the case
of no loss and σ2I is the measurement noise covariance in
the case of loss. We let σ2 →∞ in (41), representing infinite
uncertainty about the measurement zn at the decoder when it
is lost in transmission. See [21], [33] for other examples of
this approach. Replacing R and h by (40) and (41) in (21)–
(24) and taking lim

σ2→∞
, we obtain the equations defining the

online filtering operation

x̂n = x̂−n + γnP−nh
(
hTP−nh + R

)−1 (
zn − hTx̂−n

)

(42)

Pn = P−n − γnP−nh
(
hTP−nh + R

)−1
hTP−n

T (43)

x̂−n+1 = F̄ (γn) x̂n + γnGSR−1zn (44)

P−n+1 = F̄ (γn) PnF̄ (γn)
T

+ GQ̄ (γn) GT, (45)

where

F̄ (γn) =
(
F − γnGSR−1hT

)

Q̄ (γn) =
(
Q − γnSR−1ST

)
.

As in the lossless case, the decoded source signal ŝn is given
as the first element of x̂n according to (12).

The important difference between the lossless case and the
lossy case is that the decoder equations now depend on sample
arrival γn. Furthermore, one cannot rely on fixed P− and P
in the lossy case since these become stochastic through their
dependence on γn.

4) Coder Design for Lossy Transmission: Extending the
design method from Section II-B2 to the decoder for the
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lossy case described in Section II-B3, we could consider the
objective

h∗n = arg min
h

Tr [Pn|γ0 . . . γn] , (46)

to obtain a h∗n at each time step n optimized for all arrivals
γ0 . . . γn. Hereby we would minimize the trace of (43) rewrit-
ten via (32) and (33) as

Pn = P−n − γn
P−nhnhT

nP−n
T

hT
n

(
P−n + k

ρ2 Rxx

)
hn

. (47)

Since this optimization would minimize the trace of (47), we
can see that the optimization is not defined at loss events, i.e.,
at n for which γn = 0. Pn is independent of h in the event
of a loss, since Pn = P−n in this case. Furthermore, since
h defines both the encoder and decoder, (46) would require
the encoder to know γn which in turn requires instantaneous
loss-less feedback of this information from decoder to encoder.

Instead, we seek a method that allows offline calculation
of a constant h∗, given the statistics of loss. So, the goal is
a method that improves decoding performance under average
loss conditions rather than the specific loss outcomes. In con-
trast to the usual Kalman filter, Pn is stochastic due to mea-
surement losses γn. We propose the following offline method
for designing measurement vectors for improved performance
under sample losses. Ideally, it would be desirable to obtain a
h∗ that at each n minimizes the expectation of Pn with respect
to all γk, k = 0, . . . n, i.e., Eγ0...γn {Pn}. However, it is not
possible to directly calculate this expectation, a fact which is
also pointed out in [21]. We use a simplified approach where
the philosophy is to obtain a h∗ that minimizes the ensemble
average of Pn over γ.

The method is a modification of the design for lossless trans-
mission presented in Section II-B2. At each iteration i, h(i)

is selected to minimize the trace of Eγ
{
P(i)

}
, the ensemble

average of P(i), (43), with respect to γ (the measurement loss
process). This requires the arrival probability γ̄ to be known
in order to design the encoder and decoder. P−(i) is updated
according to the discrete-time Riccati equation, [32, p. 108],
of the decoder Kalman filter, adapted for measurement losses

P−(i+1) = FP−(i)F
T + GQGT−

γ

(
FP−(i)h

∗
(i) + GS

)(
FP−(i)h

∗
(i) + GS

)T

h∗ T
(i)

(
P−(i) + k

ρ2 Rxx,(i)

)
h∗(i)

. (48)

We take the ensemble average of (48) with respect to γ

Eγ

{
P−(i+1)

}
= F Eγ

{
P−(i)

}
FT + GQGT−

γ̄

(
F Eγ

{
P−(i)

}
h∗(i) + GS

)(
F Eγ

{
P−(i)

}
h∗(i) + GS

)T

h∗ T
(i)

(
Eγ

{
P−(i)

}
+ k

ρ2 Rxx,(i)

)
h∗(i)

.

(49)

The measurement vector is selected at each iteration according

TABLE II
DESIGN ALGORITHM FOR LOSSY TRANSMISSION

Initialize h(0): al = bl = αl, ∀l
Initialize Eγ

{
P−

(1)

}
to unique stabilizing solution to (28) for h = h0

Set ε to desired precision and i = 0
Set stop difference =∞
while stop difference > ε do

Set i = i+ 1
Minimize Eγ

{
P(i)

}
by (51)

Calculate h∗
(i)

by (52)

Calculate Eγ
{
P−

(i+1)

}
by (49)

Set stop difference = Tr
[
Eγ
{
P−

(i)

}
− Eγ

{
P−

(i+1)

}]

end while
Select h∗ as h∗

(i)

to (50), i.e.,

h∗(i) = arg max
h

hT Eγ

{
P−(i)

2
}

h

hT
(

Eγ

{
P−(i)

}
+ k

ρ2 Rxx,(i)

)
h
, (50)

which now takes both quantization noise and loss of measure-
ments into account.

Equation (50) may be rewritten as a Rayleigh quotient by
the same approach as in Section II-B2, cf. (36). We define y =

LTx similar to Section II-B2, replacing P−(i) by Eγ

{
P−(i)

}

such that

y∗(i) = arg max
y

yTL−1 Eγ

{
P−(i)

2
}

L−Ty

yTy
, (51)

is given as the eigenvector of L−1 Eγ

{
P−(i)

2
}

L−T corre-
sponding to its largest eigenvalue. As in Section II-B2, the
measurement vector is calculated as

h̃∗(i) =
L−Ty∗(i)

c
h∗(i) = ρh̃∗(i), (52)

where c is the first element of the vector L−Ty∗(i).
Equations (49), (51) and (52) are iterated until convergence

of (49), upon which the resulting h∗(i) is chosen as fixed
measurement vector h∗ for the decoder given by (42)–(45)
and the corresponding h̃∗ for the encoder. The optimization
method is summarized in Table II.

C. Quantizer Design

In general, it is not a trivial matter to design a quantizer for a
predictive quantization system. The optimal quantizer depends
on the encoder filters, and the encoder filters depend on the
quantization noise. Therefore, existing approaches proceed by
iteratively optimizing the filters and the quantizer in turns.
The optimum design of quantizers for predictive quantization
schemes has been treated in the literature, e.g., in [34]. In this
paper, we concentrate on the optimization of the encoder and
decoder filters to improve decoding performance with respect
to sample losses. The impact of quantization in the decoder
plays a secondary role compared to the loss of transmitted
data. Therefore, we choose a simpler suboptimal approach to
the design of quantizers.
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As the encoder (and decoder) is designed for a specific loss
probability by changing the encoder filters, P and F , accord-
ingly, the statistics of the input to the quantizer, dn, generally
vary with the loss probability. Therefore, the quantizer should
also be adapted for the specific loss probability in order to be
appropriately loaded.

The source process is an AR process driven by zero-mean
white Gaussian noise. As seen from (1), the source signal is
a sum of Gaussian random variables and so, is Gaussian. The
prediction filter output en is zero-mean Gaussian by the same
argument. Since the prediction filter in general does not match
the source (generally ai 6= αi, ∀i), the prediction residual is
not white. According to the quantization noise model presented
in Section II-A1, the noise, q̄n, fed back to the quantizer input
is also zero-mean Gaussian. Under the model assumptions, the
input, dn, to the quantizer is thus zero-mean Gaussian.

The quantizer in the encoder is designed based on the
statistics of the input in this case, the Gaussian p.d.f. with
zero mean and variance calculated as follows. Equation (32)
in Section II-B2 states the quantization noise variance for
the time-varying case used in the optimization algorithm. In
the coding framework, for a fixed measurement vector h, all
signals in the encoder are stationary and so, (32) reduces
to (53), i.e.,

R = k var {dn} =
k

ρ2
hT (A + B) h, (53)

where

A =

[
Rss 0(p+1)×f

0f×(p+1) 0(f×f)

]

B = R

[
0(p+1)×(p+1) 0(p+1)×f

0f×(p+1) I(f×f)

]
.

(54)

From (18), (19), (53) and (54) we can calculate the quantizer
input variance as follows:

var {dn} =
hTAh

ρ2 − k∑f
i=1 bi

2
. (55)

We have considered both Lloyd-Max and uniform quanti-
zation for the coding framework presented in this paper.

Lloyd-Max quantizers can be designed to match a specific
input p.d.f. using the “Lloyd II” algorithm [13]. Lloyd’s and
Max’s original quantizers for Gaussian input can be found
in [35], [36] and scaled according to input variance.

Uniform quantizers can be designed to match a Gaussian
input p.d.f. using the expression for the step size in [37].

The coding loss, β, and corresponding parameters, ρ and k,
are estimated empirically for the quantizer. These parameters
are independent of quantizer scaling, provided that the quan-
tizer is optimally loaded for the given input, and only depend
on the quantizer type, uniform or Lloyd-Max, and resolution.
So β is estimated as follows:

1) Design a quantizer, Q(x), (Lloyd-Max or uniform) with
given precision for a unit-variance zero-mean Gaussian
distribution, fX(x).

2) Generate a random sequence of data, x, according to the
distribution fX(x).

3) Quantize x: y = Q(x).
4) Estimate β as shown in (56), cf. definition of coding

gain in [28].

β̂ =
E {x− y}2

σ2
x

(56)

The estimate β̂ for a particular quantizer (type and resolu-
tion) is used as β in the calculation of quantization model
parameters k and ρ in the encoder and decoder presented
in Sections II-A and II-B.

D. Summary of Coding Framework

For transmission across erasure channels, the framework
presented in Sections II-A and II-B operates as follows:
• It is assumed that both the encoder and the decoder know

the source signal model {αi, i = 1, . . . , N}, var {r}, and
channel arrival probability γ̄.

• The encoder and decoder parameters in the form of h
are designed according to the method in Sections II-B2
and II-B4 in case of lossless transmission. This is done
offline in both encoder and decoder, respectively.

• The encoder filter parameters ai and bi, i = 1, . . . , N
are obtained from the designed h∗ by (18) and (19).

• The quantizer Q(·) is designed as outlined in Sec-
tion II-C.

• The encoder codes the source signal according to (2)–(4)
and transmits quantization indices, j, for reconstruction
of zn at the decoder, which requires the decoder to know
the quantizer codebook.

• The decoder receives quantization indices from the en-
coder with a probability of γ̄ (equal to 1 in case of lossless
transmission) and decodes the source signal depending
on whether the current index was lost or not (γn = 0
/ γn = 1), using h∗ in (42)–(45) ((26)–(28) in case of
lossless transmission.)

E. Comparison to Related Method

As mentioned in the introduction, [24] presents a method
for robust predictive quantization. This section presents an
overview comparison illustrating important differences be-
tween [24] and our proposed method. We shall refer to our
method as Iterative Measurement Vector Improvement (IMVI)
and the method in [24] as Gain Vector Search (GVS).

The encoders are Linear Time-Invariant (LTI) systems, both
in the case of GVS and IMVI, whereas the decoders are
generally time-varying. The decoder in GVS varies as a JLS
according to the state of the Markov loss model, with a fixed
set of encoder/decoder gains for each state. Thus, the decoding
in GVS only depends on the current state of loss. Our decoder
in IMVI varies both according to sample loss, γn, as well
as the time-varying Kalman filter statistics, P−n and Pn. The
Kalman filter statistics encompass the effects of all previous
losses, so the decoding in IMVI at time n depends on loss at
time n as well as all previous losses.

The GVS method works by optimizing two different
Kalman-like filters, at the encoder and decoder respectively.
Both the encoder and decoder filters are identical in structure



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING

to a Kalman filter, but the filter gains are not calculated in the
same manner as in Kalman filters. Our IMVI method employs
an actual Kalman filter, but only at the decoder. The encoder
relies on fixed Finite Impulse Response (FIR) filters. The IMVI
method applied to the coding framework in this paper is based
on an encoder structure in which the filtering of quantized
prediction errors has been split into separate prediction error
and quantization noise feedback parts. This offers a higher
degree of freedom in encoder design.

The GVS framework accommodates auto-regressive moving
average (ARMA) source models, while our model is restricted
to accommodate AR source models in its current form.

The GVS framework uses a general Markov loss model,
whereas our model only explicitly accommodates i.i.d. losses.
Other types of (non-i.i.d.) losses such as Gilbert-Elliot loss
models can be handled in our IMVI framework in terms of
overall loss probability.

III. RESULTS

A. Simulations

Simulations have been conducted to evaluate the perfor-
mance of the optimization method proposed in Section II-B4.

This paper has supplementary downloadable material avail-
able at the web page [38], provided by the authors. This
includes all Matlab code necessary to fully reproduce the
simulation results in this section.
• For testing IMVI, stationary random source signals were

generated from AR processes of different orders. Sample
arrivals γn were simulated as outcomes of a Bernoulli
random process over a series of loss probabilities γ̄ ∈
[0, 1] and applied to the transmitted encoder quantization
indices j. The generated source signals were encoded
with encoder and decoder designed for each specified
loss probability (γ̄ in (49)). The quantization indices with
losses were decoded using the Kalman decoder given
by (42)–(45).

• As a baseline for comparison for IMVI, source signals
were generated in the same manner as for IMVI above.
The generated source signals were encoded with en-
coder and decoder designed for no loss (γ̄ = 0). The
quantization indices, j, subject to the same losses as
above for IMVI were decoded using the Kalman decoder
given by (42)–(45). We shall denote this baseline method
“Baseline”.

The simulations have been conducted for both uniform and
Lloyd-Max quantizers at 2, 3, and 4 bits/sample, respectively.

Test data were generated from statistical models estimated
from signals encountered in speech: AR coefficients were
estimated from 20ms sub-sequences selected from voice-active
regions of speech found in [39]. The coefficients represent se-
quences with both low-pass, band-pass, and high-pass spectral
shapes. For each of the examples we have plotted the power
spectrum of the source AR process in Fig. 2.

Decoded signal Signal-to-Noise Ratio (SNR) is compared
for IMVI and Baseline. In the following, we present results
of the simulations described in Section III-A. We present data

(a) Example I (b) Example II

(c) Example III (d) Example IV

Fig. 2. Power spectra of the source signals used in examples I-IV.

TABLE III
MATCHED PREDICTION PARAMETERS FOR EXAMPLE I.

a1 a2 a3 b1 b2 b3

1.6898 −0.7865 −0.0035 1.6898 −0.7865 −0.0035

TABLE IV
FILTER PARAMETERS FOR BASELINE-2, EXAMPLE I.

a1 a2 a3 b1 b2 b3

1.1190 0.1758 −0.4515 1.7468 −0.5987 −0.2181

from four different examples of source data produced from
AR source processes.

The decoded signal SNRs are plotted in Fig. 3a, 3b,
4a and 4b for the simulated range of loss probabilities at
quantization rates of 2, 3, and 4 bits/sample. Baseline-{2,3,4}
and IMVI-{2,3,4} respectively. Examples I and II have been
produced with Lloyd-Max quantization. Examples III and IV
have been produced with uniform quantization. The source
processes of the examples are of third, fifth, ninth, and tenth
order, respectively.

B. Numerical Examples

The source AR process for Example I is a third-order
process with the following parameters: α1 = 1.6898, α2 =
−0.7865, α3 = −0.0035. The parameters correspond to
the matched prediction parameters shown in Table III (with
F = P ). The filter parameters for Baseline-2 are shown in IV.
The filter parameters designed for the specific loss rates at
2 bits/sample quantization (IMVI-2) are shown in V. The
accompanying quantizer parameters are listed in Table VI;
the quantizer parameters for Baseline-2 are the parameters for
γ̄ = 0 at all loss probabilities. Parameters for the remaining
cases of Example I (Baseline-3, -4 and IMVI-3, -4) as well
as for Examples II-IV have been omitted to save space. For
the remaining examples, we show the decoded signal SNRs
in Fig. 3a, 3b, 4a and 4b.
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TABLE V
FILTER PARAMETERS DESIGNED FOR THE SPECIFIC LOSS RATES IN

EXAMPLE I (IMVI-2).

γ̄ [%] a1 a2 a3 b1 b2 b3

0 1.1194 0.1752 −0.4513 1.7468 −0.5990 −0.2178
0.10 1.1079 0.1755 −0.4474 1.7349 −0.5947 −0.2163
0.14 1.1030 0.1760 −0.4458 1.7300 −0.5928 −0.2158
0.21 1.0960 0.1768 −0.4435 1.7233 −0.5902 −0.2151
0.30 1.0860 0.1785 −0.4405 1.7141 −0.5866 −0.2142
0.43 1.0721 0.1817 −0.4364 1.7018 −0.5813 −0.2132
0.62 1.0526 0.1873 −0.4312 1.6855 −0.5738 −0.2124
0.89 1.0255 0.1971 −0.4247 1.6641 −0.5628 −0.2120
1.27 0.9883 0.2129 −0.4168 1.6363 −0.5467 −0.2127
1.83 0.9376 0.2375 −0.4072 1.6003 −0.5232 −0.2153
2.64 0.8690 0.2732 −0.3952 1.5538 −0.4891 −0.2206
3.79 0.7771 0.3212 −0.3783 1.4940 −0.4409 −0.2287
5.46 0.6559 0.3794 −0.3512 1.4178 −0.3751 −0.2379
7.85 0.5002 0.4378 −0.3037 1.3224 −0.2896 −0.2436

11.29 0.3086 0.4744 −0.2218 1.2071 −0.1859 −0.2382
16.24 0.0888 0.4528 −0.0939 1.0767 −0.0737 −0.2139
23.36 −0.1442 0.3305 0.0762 0.9409 0.0301 −0.1689
33.60 −0.3799 0.0695 0.2519 0.8055 0.1107 −0.1102
48.33 −0.6172 −0.3422 0.3224 0.6565 0.1633 −0.0437
69.52 −0.8542 −0.8011 0.0186 0.4091 0.1811 0.0418

100 −1.0983 −1.0983 −1.0000 0 0 0

TABLE VI
QUANTIZER PARAMETERS USED IN EXAMPLE I, IMVI-2.

β = 0.1174

γ̄ [%] Partition

0 −1.4108 −1.9106× 10−07 1.4108

0.10 −1.4134 −1.9141× 10−07 1.4134

0.14 −1.4151 −1.9164× 10−07 1.4151

0.21 −1.4181 −1.9205× 10−07 1.4181

0.30 −1.4232 −1.8600× 10−07 1.4232

0.43 −1.4318 −1.8713× 10−07 1.4318

0.62 −1.4462 −1.8901× 10−07 1.4462

0.89 −1.4694 −1.9204× 10−07 1.4694

1.27 −1.5061 −1.8996× 10−07 1.5061

1.83 −1.5631 −1.9026× 10−07 1.5631

2.64 −1.6501 −1.8706× 10−07 1.6501

3.79 −1.7822 −1.8815× 10−07 1.7822

5.46 −1.9819 −1.8806× 10−07 1.9819

7.85 −2.2836 −1.8795× 10−07 2.2836

11.29 −2.7348 −1.8840× 10−07 2.7348

16.24 −3.3968 −1.8903× 10−07 3.3968

23.36 −4.3657 −1.8940× 10−07 4.3657

33.60 −5.8621 −1.9133× 10−07 5.8621

48.33 −8.3731 −1.9147× 10−07 8.3731

69.52 −12.5918 −1.8789× 10−07 12.5918

100 −19.3211 −1.8813× 10−07 19.3211

γ̄ [%] Codebook

0 −2.1708 −0.6507 0.6507 2.1708
0.10 −2.1748 −0.6519 0.6519 2.1748
0.14 −2.1774 −0.6527 0.6527 2.1774
0.21 −2.1820 −0.6541 0.6541 2.1820
0.30 −2.1899 −0.6565 0.6565 2.1899
0.43 −2.2032 −0.6605 0.6605 2.2032
0.62 −2.2253 −0.6671 0.6671 2.2253
0.89 −2.2610 −0.6778 0.6778 2.2610
1.27 −2.3175 −0.6947 0.6947 2.3175
1.83 −2.4052 −0.7210 0.7210 2.4052
2.64 −2.5391 −0.7612 0.7612 2.5391
3.79 −2.7423 −0.8221 0.8221 2.7423
5.46 −3.0496 −0.9142 0.9142 3.0496
7.85 −3.5139 −1.0534 1.0534 3.5139

11.29 −4.2081 −1.2615 1.2615 4.2081
16.24 −5.2267 −1.5668 1.5668 5.2267
23.36 −6.7176 −2.0137 2.0137 6.7176
33.60 −9.0202 −2.7040 2.7040 9.0202
48.33 −12.8839 −3.8622 3.8622 12.8839
69.52 −19.3753 −5.8082 5.8082 19.3753

100 −29.7300 −8.9122 8.9122 29.7300

(a) Example I

(b) Example II

Fig. 3. Examples of coding: (a) a third-order AR source, (b) a fifth-order AR
source. Decoded signal SNRs are plotted against i.i.d. channel loss probability
for Baseline and IMVI with Lloyd-Max quantization at 2-4 bits/sample.

TABLE VII
MAXIMUM OBSERVED SNR IMPROVEMENT IN EXAMPLES I-IV.

Quantization rate [bits/sample] 2 3 4

Example I
Loss prob. 23.4% 16.2% 11.3%
SNR improvement [dB] 3.2 7.1 9.7

Example II
Loss prob. 33.6% 16.2% 11.3%
SNR improvement [dB] 3.2 5.4 6.6

Example III
Loss prob. 33.6% 16.2% 16.2%
SNR improvement [dB] 3.7 6.3 7.8

Example IV
Loss prob. 23.3% 16.2% 11.3%
SNR improvement [dB] 1.7 3.3 4.2

C. Summary

The examples show substantial improvements in decoded
signal SNR under sample erasure conditions. For all examples,
the improvement is rather modest at low loss probability,
especially at the lowest quantization rate (2 bits/sample),
improving for higher quantization rates (3 and 4 bits/sample).
For higher loss rates, the improvement in decoded signal SNR
is substantial. The maximum decoded signal SNR observed in
examples I-IV are shown in Table VII.

At 2 bits/sample, IMVI demonstrates a maximum improve-
ment in decoded signal SNR in the range 1.7 to 3.7 dB, at 3
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(a) Example III

(b) Example IV

Fig. 4. Examples of coding: (a) a ninth-order AR source, (b) a tenth-order AR
source. Decoded signal SNRs are plotted against i.i.d. channel loss probability
for Baseline and IMVI with uniform quantization at 2-4 bits/sample.

bits/sample, we see improvements in the range 3.3 to 7.1 dB,
and at 4 bits/sample, the method shows improvements in the
range 4.2 to 9.7 dB.

The examples I-IV demonstrate that IMVI is capable of
substantially improving the coding performance of the coding
framework presented in Sections II-A and II-B. The method
consistently improves performance for different AR source
signal models and quantizers.

IV. CONCLUDING REMARKS

We have presented a novel method for optimization of
predictive quantization of AR signals for transmission over
channels with sample erasures. An important contribution of
the presented method is a coding framework “design philoso-
phy” that considers the encoding a process that produces noisy
measurements of the source signal, in Kalman estimation’s
understanding of the term. The decoding is viewed as optimal
estimation of the source signal based on these measurements.

The proposed method, IMVI, provides offline design of the
encoder and decoder for optimal estimation by a Kalman filter
at the decoder. By taking channel erasures into account in
minimizing the trace of the Kalman state error covariance,
we have obtained a design method that allows selection of
encoder and decoder parameters which improve robustness to
losses and provides MMSE estimation given the actual channel
losses at the decoder.

As mentioned in the introduction, earlier applications of
Kalman filtering in source coding, [14]–[18], have employed
Kalman filtering at both the encoder and decoder and have
not specifically considered transmission loss. Our method
employs a Kalman filter at the decoder. The encoder relies
on fixed FIR filters. This has the advantage of keeping the
encoder simple, which could be a simple sensor node lim-
ited in power consumption and/or computation power, while
providing MMSE estimation at the decoder, which could
be a centralized controller or monitoring node without such
restrictions in power consumption or lacking computational
power.

In this paper, IMVI is demonstrated by application to a
generalized DPCM encoder structure in which the filtering
of quantized prediction errors has been split into separate
prediction error and quantization noise feedback parts. This
offers a higher degree of freedom in encoder design than an
encoder more along the lines of classic DPCM with only
a single filter. This higher degree of freedom may provide
additional gains over single-filter encoders.

IMVI is limited to AR source signal models in the current
framework. We believe it is feasible to extend the current
model to more general ARMA source signal models, mak-
ing the framework more versatile. This is a topic of future
investigation.

IMVI has been demonstrated to improve decoded signal
SNR substantially under sample erasure conditions for a
diverse selection of source signal models. Furthermore, the
improvements are demonstrated consistently for several dif-
ferent model orders and quantization parameters.
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