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Abstract

We consider linear predictive coding and noise shaping for coding and transmission of
auto-regressive (AR) sources over lossy networks. We generalize an existing framework to
arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further
reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain
delay can be obtained without additional computational complexity by exploiting the state-
space structure. We prove that the proposed smoothing strategy strictly improves performance
under quite general conditions. Finally, we provide simulations on AR sources, and channels
with correlated losses, and show that substantial improvements are possible.

I. INTRODUCTION

In coding of source signals for transmission across lossy networks, it is traditionally the
job of a subsequent error correcting code (ECC) to ensure robustness against transmission
losses. In [1] we have presented a method for design of linear predictive coding (LPC)
with noise shaping optimized for transmission losses, which does not rely on ECCs in
order to achieve the desired degree of robustness towards losses. The coding problem
is formulated and solved as a state estimation problem and the coding performance is
improved through optimization for the known transmission loss statistics over part of a
state-space model representing the source and the encoder.

Kalman estimation is employed for state estimation at the decoder. The technique for
handling lost measurements has been described in [2], [3]. However, [2], [3] do not
consider the optimization of a coding system for such losses. Optimization of a LPC
system for transmission losses has been considered in [4], [5]. The approach in [4], [5]
is, however, quite different from the approach presented in this paper and the decoding
is based on fixed filters alternating between loss and non-loss states and are as such not
linear minimum mean-squared error (LMMSE)-optimal estimators. [4], [5] work with a
flexible Markov loss model. An optimal estimator for such Markov jump linear systems
is found in [6]. The estimator type employed in [4], [5] is more akin to the approach
described in [7].
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and Production Sciences, grants no. 274-05-0488 and 274-07-0383, respectively.
† The work of M. N. Murthi was supported by the U.S. National Science Foundation under Awards CCF-0347229,

and CNS-0519933.



In this paper, we propose to use fixed-lag smoothing at the decoder, in order to reduce
the impact of transmission failures, at the expense of a small decoder delay. We show
that if the desired smoothing lag is less than or equal to the order of the predictor, fixed-
lag smoothing can be obtained without additional computational complexity. Moreover,
under quite general conditions, we prove that our proposed smoothing strategy strictly
improves performance. Finally, we provide simulations on higher order auto-regressive
(AR) sources, and channels with correlated losses, and show that substantial improve-
ments are possible. In particular, at loss rates around 10 %, a reduction of about 2 dB in
distortion is observed, with only three samples delay at the decoder.

II. CODING FRAMEWORK

This section describes the coding framework. The framework and design method have
been presented in [1]. In the following, we summarize and generalize important results
of [1], which will be needed in order to establish our main results in Section III.

A. Source Encoder
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Fig. 1. Source encoder with linear additive noise quantizer model.

The source signal s is modeled as outcomes of an AR process [1]

sn =
N∑

i=1

αisn−i + rn, (1)

of order N , driven by zero-mean stationary white Gaussian noise r with known variance
σ2
r . The source process is assumed stable.
The encoder (shown in Figure 1) is defined by the following equations [1]

dn = en − q̄n, en = sn −
p∑

i=1

aisn−i, q̄n =

f∑

i=1

biqn−i, (2)

where en is the prediction error, q̄n is the filtered quantization noise feedback, dn is the
input to the quantizer, and qn is the additive component of the quantization error; p is the
predictor order; ai, i = 1, . . . , p are the predictor coefficients; f is the noise feedback
filter order and bi, i = 1, . . . , f are the noise feedback filter coefficients.

The output transmitted to the decoder is quantization indices, j, for the quantized
prediction error, zn = Q(dn). The encoder’s scalar quantization Q(·) is approximated by
the following linear model with additive noise

zn = ρdn + qn, (3)



where ρ ∈ [0, 1], and qn is a stationary zero-mean white Gaussian noise, independent of
dn, with variance σ2

q = k var {dn}. The quantization noise variance is proportional, by a
constant k, to the variance of the input to the quantizer, dn. ρ and k are given by the
coding loss, β, of the quantizer:

ρ = 1− β k = β(1− β),

where β is the inverse of the quantizer coding gain [8]. See [1] for a discussion of this
linear model of the quantizer.

The quantization noise feecback is de-correlated from dn by scaling dn by ρ in the
path subtracting the quantizer input from the quantizer output. This ensures that only the
additive part of the quantization noise qn = zn−ρdn is fed back. This allows us to model
the fed back noise as white Gaussian which simplifies the optimization of the encoder.
The design of Lloyd-Max quantizers for use in the encoder is treated in [1].

B. Kalman Filter-Based Decoder
The decoder uses LMMSE (Kalman) estimation of the source signal s based on the

measurements z obtained from the partially received sequence of quantization indices
j. The Kalman estimator ŝn of sn is derived as in, e.g., [9] from a state-space model
of the source and encoder. The process equation encompasses both the production of
the source signal as well as the evolution of the states of the encoder filters P and
F . The measurement equation represents the encoder’s filters and the linear model of
the quantizer such that the measurements are the quantized prediction errors from the
encoder. The following descriptions of the state-space model and decoder equations are
a generalization from the state-space model in [1].

The process equation, (4), and the measurement equation, (5), constitute the state-space
model modeling the source and the encoder.

xn+1 = Fxn + Gwn (4)

zn = hTxn + qn (5)

The state xn is composed of the current signal sample and the states of the predictor
and noise feedback filter.

xn =
[
sn sn−1 · · · sn−(M−1) qn−1 · · · qn−f

]T
, (6)

where M = max{N, p+ 1}. The state transition matrix F is defined as

F =




α1×N 01×(M−N)

IM−1 0(M−1)×1
0M×f

0f×M
01×f

I(f−1) 0(f−1)×1


 , (7)

where α = [α1 · · ·αN ] are the coefficients of the source AR process, Ix is an x × x
identity matrix, and 0 is an all-zero matrix. The subscripts in (7) denote the dimensions
of the individual components.

The process noise wn is stationary zero-mean white Gaussian with covariance Q

wn =

[
rn
qn

]
Q =

[
σ2
r 0

0 σ2
q

]
. (8)



The measurement noise is the additive part of the quantization noise, qn, so the mea-
surement noise covariance in typical Kalman filter notation is R = σ2

q . The connection
between quantization noise in the state originating from wn, and qn added to the mea-
surement is captured by defining the covariance, S, between process and measurement
noise as follows:

S = E

{[
rn
qn

]
qn

}
=

[
0
σ2
q

]
. (9)

We use a formulation of the Kalman filter taking the covariance S into account. G is a
transform enabling the process noise wn to be defined in a compact form

G =




1 0
0(M−1)×2
0 1
0(f−1)×2


 , or G =

[
1 0
0(M−1)×2

]
, if f = 0. (10)

The measurement vector h represents the filters P and F as well as the scaling ρ
from (3).

h = ρh̃ h̃ =
[

1 −a1 · · · − ap 01×(M−p−1) −b1 · · · − bf
]T
, (11)

where h̃ contains the coefficients of the prediction error and noise feedback filters, cf. (2).
The zeros fill the measurement vector to match the necessary size of the state in case P
is chosen with order p < N − 1.

Following the approach described in [1], (12)–(15) are obtained for the Kalman esti-
mator x̂n of xn in the case of channel erasures.

x̂n = x̂−n + γnP
−
nh
(
hTP−nh + R

)−1 (
zn − hTx̂−n

)
(12)

Pn = P−n − γnP−nh
(
hTP−nh + R

)−1
hTP−n

T (13)

x̂−n+1 = Fx̂n + γnGSR−1
(
zn − hTx̂n

)
(14)

P−n+1 =
(
F − γnGSR−1hT

)
Pn

(
F − γnGSR−1hT

)T

+G
(
Q − γnSR−1ST

)
GT,

(15)

where

x̂n = E {xn|z0 . . . zn} x̂−n+1 = E {xn+1|z0 . . . zn}
Pn = E

{
x̃nx̃

T
n

}
, x̃n = xn − x̂n P−n+1 = E

{(
xn+1 − x̂−n+1

) (
xn+1 − x̂−n+1

)T}
.

III. FIXED-LAG SMOOTHING

As seen in (6), the state xn contains both the source sample sn as well as M − 1
previous source samples sn−1 . . . sn−(M−1). This means that in addition to providing an
estimate of the current source sample, ŝn|n, the state estimate also provides the delayed
source signal estimates ŝn−1|n . . . ŝn−(M−1)|n. In this section we show how these estimates
provide fixed-lag smoothing.

In [10], the authors describe a fixed-lag smoothing approach with an example of a state-
space-model somewhat similar (models an autoregressive source) to the one considered
in this paper in Section II-B. This smoothing approach does not apply to the signal model
presented here due to the requirements of [10, eq. (5)].



A different fixed-lag smoothing approach using Kalman filters is found in, e.g., [9],
[11]. This smoothing approach is based on an augmentation of the state-space model and
requires extensions to the Kalman estimator.

Fixed-lag smoothing with a state-space model similar to the one in Section II-B
is discussed in [12]. The model in [12] is simpler, e.g., does not contain a separate
noise feedback part and the paper does not present mathematical details of estimation
improvement by smoothing.

The fixed-lag smoothing approach made possible with our presented state-space model
comes at no additional computational cost as it is already an inherent part of the state-
space model, i.e., the smoothed (delayed) estimates are readily available from the state
estimate.1 In the following, we show under which conditions the delayed estimates ŝn−k|n
provide an improvement over ŝn−k|n−k for k ∈ [1,M − 1].

From (14) we see that
[
ŝ−n|n−1 ŝ−n−1|n−1 . . . ŝ

−
n−(M−1)|n−1 q̂−n−1|n−1 . . . q̂

−
n−f |n−1

]T
=

F
[
ŝn−1|n−1 ŝn−2|n−1 . . . ŝn−M |n−1 q̂n−2|n−1 . . . q̂n−f−1|n−1

]T
+

γnGSR−1
(
zn − hTx̂n

)
. (16)

By the structure of G, S, and R we see that

GSR−1 =

{[
01×M 1 01×(f−1)

]T for f > 0

[01×M ]T for f = 0,
(17)

meaning that the right summand in (16) affects only q̂−n−1. From the structure of F,
see (7), we thus conclude that

ŝ−n−k|n−1 = ŝn−k|n−1, for k ∈ [1,M − 1]. (18)

It follows from (13) and (18) that in order for the estimate ŝn−k|n (in x̂n) to be better
than ŝn−k|n−1 (in x̂n−1), we require elements 2 . . .M on the diagonal of Pn to be smaller
than the corresponding elements on the diagonal of P−n . Examining (13) it is trivial to
see that this is not the case in the event of loss (γn = 0). In the event of correct arrival
(γn = 1) we see that elements 2 . . .M on the diagonal d = diag

(
P−nhh

TP−n
T
)

in (13)
must be positive in order to fulfill the requirement.

d = [d1 . . . d2N+1]
T = diag

(
P−nhh

TP−n
T
)
. (19)

By construction, hhT is a positive semidefinite matrix. By definition of a positive semidef-
inite matrix we see that the elements di on the diagonal d, are di ≥ 0, ∀i. Thus it is
proved that the estimates ŝn−k|n are never worse than ŝn−k|n−1. In fact, improvement is
generally guaranteed under the conditions stated in Theorem 1.

Theorem 1. Given at least one of the following conditions:
1) The encoder prediction error filter is 1− P (z) 6= H−1src (z), i.e., 1− P (z) does not

whiten the source completely.

1We have not been able to prove that our proposed smoothing technique is optimal. However, we have implemented
existing smoothing techniques based on augmented state-space models [9], [11] and through simulations observed that
the results are indeed identical.



2) There is noise feedback in the encoder: F (z) 6= 0.
Then

E
{(
sn−k − ŝn−k|n

)2}
< E

{(
sn−k − ŝn−k|n−1

)2} , for k ∈ [1,M − 1].

Proof of Theorem 1: Consider the diagonal elements di from (19). Observe from (13)
that

E
{(
sn−k − ŝn−k|n

)2}
= E

{(
sn−k − ŝn−k|n−1

)2}− d1+k

hTP−nh + R
, for k ∈ [1,M − 1].

We prove the theorem by showing that di > 0 for i = 2 . . .M for conditions 1 and 2.
Considering γn = 1, (15) reduces to

P−nh =
(
F −GSR−1hT

)
Pn

(
F −GSR−1hT

)T
h + G

(
Q − SR−1ST

)
GTh. (20)

Referring to (7) and (17) (−GSR−1hT subtracts hT from the (M + 1)th row of F) we
see that

(
F −GSR−1hT

)
(i,j)

= F(i,j), for i = 2 . . .M, j = 1 . . .M + f. (21)

From (8)–(10) we see that

{
G
(
Q − SR−1ST

)
GT
}
i,j

=

{
σ2
r for i = j = 1

0 for i 6= 1, j 6= 1.
(22)

Let pi,j denote the (i, j)th element of P−n , pi,j = pj,i. Then

{
P−nh

}
(i)

=
{(

F −GSR−1hT
)
Pn

(
F −GSR−1hT

)T}
(i,1...(M+f))

h

+
{
G
(
Q − SR−1ST

)
GT
}
(i,1...(M+f))︸ ︷︷ ︸

0, cf. (22)

h, for i = 2 . . .M

=

[(
N∑

j=1

αjpi,j

)
pi,1 . . . pi,M−1

(
M+f∑

j=1

h(j)pi,j

)
pi,(M+1) . . . pi,(M+f)

]
h,

︸ ︷︷ ︸
(a)

︸ ︷︷ ︸
(b)

for i = 2 . . . N + 1. (23)

It follows from (19) that di =
(
{P−nh}(i)

)2
. Observe that under the converse of condi-

tion 1, ai = αi, for i = 0 . . . N and ai = 0, for i = N+1 . . .M . Thus under condition 1,

∃i such that ai 6=
{
αi i = 0 . . . N

0 i = N + 1 . . .M.
(24)

By the structure of h, cf. (11), and (23), part (a), (24) guarentees that di > 0.
Under condition 2,

∃i such that bi 6= 0. (25)

By the structure of h and (23), part (b), (25) guarentees that di > 0.



Remark 1. From the state-space model it may seem that it is not possible to obtain
smoothed estimates ŝn−l|n for lags l > M − 1, i.e. that one cannot obtain smoothed
estimates beyond the chosen order of the predictor, p. It is however possible to obtain
smoothed estimates for arbitrary lags l without increasing the predictor order p, by
defining

āi =

{
ai i = 0 . . . p

0 i = p+ 1 . . . l,

where {āi} and l are used in place of {ai} and p in the encoder and decoder equations
in Sections II-A and II-B.

Smoothed estimates at lags l > M − 1 come at additional computational cost since
they require extension of the signal model beyond what is required to model the encoder
and source.

IV. SIMULATIONS

We present results for coding of a stationary source with transmission across an
erasure channel. Section IV-A presents the decoding performance results and Section IV-B
presents the encoder filters designed for the loss statistics under consideration (using the
filter design algortihm in [1]) and exemplifies how these filters generally satisfy the
conditions in Theorem 1.

A. Performance of Fixed-Lag Smooting
A set of Monte Carlo simulations were performed for the order N = 5 stationary

source defined by the parameters α1 = −0.2948, α2 = −0.9527, α3 = −0.0032, α4 =
0.0040, α5 = 0.1995.

We consider channel erasure probabilities between 1× 10−3 and 1 and simulate i.i.d.
losses as well as Gilbert-Elliot (GE) losses with a mean error burst length 3, denoted “GE-
3”. Simulations have been performed for identical source sequences of length 1× 106

at the simulated erasure probabilities. The quantizer is a Lloyd-Max quantizer at 4
bits/sample. In this example, we set the encoder filter orders to p = f = N .

Signal-to-noise ratios (SNRs) of the decoded signals are shown in Figure 2a for
i.i.d. channel erasures and in Figure 2b for GE-3. The figures clearly show substantial
improvement in SNR when using smoothing. In the i.i.d. loss case, the improvement
by smoothing is up to 3.5 dB (at 48.3 % loss prob.) and approximately 2 dB at 10 %.
The improvement is most pronounced at high loss rates at which the decoding error
continues to decrease significantly up to lag 4 out of 5 shown in the figure. In the GE-3
loss case, the decoding error is evidently worse due to the correlated losses. However an
improvement in SNR of up to 3.0 dB is still achievable in this case (at 48.3 % loss prob.)
and approximately 1.5 dB at 10 %.

B. Examples of Encoder Filters
Figure 3a depicts the magnitude spectra of the encoder prediction error filters 1−P (z)

designed for each of the channel erasure probabilities considered in Section IV-A. The
encoder noise feedback filter spectra are depicted in Figure 3b. The inverse of the source
magnitude spectrum is plotted as a dashed line. Figure 3 was included to emphasize
that the filter design algorithm generally produces encoder filters that fullfil both of
the requirements in Theorem 1. Figure 3a shows that the prediction error filters do not
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Fig. 2. Examples of coding: (a) i.i.d. channel erasures, (b) GE-3 channel erasures. Lloyd-Max quantization at 4
bits/sample. Results for increasing smoothing lags (0-5 samples) are plotted (from bottom to top) in increasingly
darker shades of grey.
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Fig. 3. Encoder filters designed for the example in Section IV-A: (a) 1 − P (z) magnitude spectra for the erasure
probabilities simulated in the example, the dashed line depicts the magnitude spectrum of the inverse of the source
model; (b) accompanying F (z) magnitude spectra. The spectra are designed for increasing loss probability from top
to bottom.

equal the inverse of the source model and thus fulfill Theorem 1, condition 1. Figure 3b
shows that the noise feedback filters are generally non-zero and thus fulfill Theorem 1,
condition 2.

V. CONCLUSIONS

We have presented a generalization of the source coding and filter design framework
previously introduced in [1], providing fixed-lag smoothing up to arbitrary lengths as well
as encoder prediction error and noise feedback filters of arbitrary orders. These properties
were constrained to the source model order in our previous work.

We have examined the fixed-lag smoothing properties of the coding framework and
pointed out that smoothed (delayed) estimates at the decoder for lags up to at least



max{N − 1, p} (source model and predictor orders N and p, resp.) are readily available
at no additional computational cost which is not the case for other more general smoothing
approaches associated with Kalman filtering. We have provided proof that the estimation
error of these delayed estimates is guaranteed to decrease under simple conditions fulfilled
by the filter design approach of the coding framework.

We have provided simulation results that demonstrate how the described smoothing
approach can provide substantial improvements in estimation accuracy. Furthermore we
have shown accompanying filter design examples which support the theoretical founda-
tions for the observed improvements in estimation accuracy by smoothing.
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