332 research outputs found
Dynamic recrystallization nanoarchitectonics of FeCrCuMnNi multi-phase high entropy alloy
Dynamic recrystallization behavior of the FeCrCuMnNi high entropy alloy (HEA) was investigated through hot compression test at different temperatures and at constant strain rate. The results revealed that during hot deformation of FeCrCuMnNi HEA, flow stress and work hardening rate rapidly decreased with increasing the deformation temperature. Discontinuous dynamic recrystallization (dDRX) was found to be the main active mechanism during hot deformation, which was the governing mechanism even at higher temperatures. In addition, bulging was an effective mechanism for inducing new recrystallized nuclei. Grain growth was occurred at slow strain rate in comparison to conventional alloys and other HEAs. This behavior was attributed to the continuous nucleation during dDRX, sluggish diffusion, high solution hardening characteristics of HEAs, and the presence of multiple phases in the FeCrCuMnNi HEA. Texture analysis showed that at lower temperatures, deformation texture including // CA fiber was formed. By increasing the deformation temperature, the formation of recrystallization texture fibers such as // CA and // CA rapidly intensified
A new method for detection of induced mutations in wheat
Contains fulltext :
141188.pdf (preprint version ) (Open Access
Frequency division multiplexing readout of 60 low-noise transition-edge sensor bolometers
We demonstrate multiplexing readout of 60 transition edge sensor (TES) bolometers operating at 90 mK using a frequency division multiplexing readout chain with bias frequencies ranging from 1 to 3.5 MHz and with a typical frequency spacing of 32 kHz. The readout chain starts with a two-stage SQUID amplifier and has a noise level of 9.5 pA/ â{ Hz } . We compare current-voltage curves and noise spectra of TESs measured in a single-pixel mode and in a multiplexing mode. We also map the noise equivalent power (NEP) and the saturation power of the bolometers in both modes, where there are 43 pixels that do not show more than 10% difference in NEP and 5% in saturation power when measured in single pixel and multiplex modes. We have read out a TES with an NEP of 0.45 aW/ â{ Hz } in the multiplexing-mode, which demonstrates the capability of reading out ultra-low noise TES bolometer arrays for space applications
Electrical cross talk of a frequency division multiplexing readout for a transition edge sensor bolometer array
We have characterized and mapped the electrical cross talk (ECT) of a frequency division multiplexing (FDM) system with a transition edge sensor (TES) bolometer array, which is intended for space applications. By adding a small modulation at 120 Hz to the AC bias voltage of one bolometer and measuring the cross talk response in the current noise spectra of the others simultaneously, we have for the first time mapped the ECT level of 61 pixels with a nominal frequency spacing of 32 kHz in a 61 Ă 61 matrix and a carrier frequency ranging from 1 MHz to 4 MHz. We find that about 94% of the pixels show an ECT level of less than 0.4%. Only the adjacent pixels reach this level, and the ECT for the rest of the pixels is less than 0.1%. We also observe higher ECT levels, up to 10%, between some of the pixels, which have bundled long, parallel coplanar wires connecting TES bolometers to inductor-capacitor filters. In this case, the high mutual inductances dominate. To mitigate this source of ECT, the coplanar wires should be replaced by microstrip wires in the array. Our study suggests that an FDM system can have a relatively low ECT level, e.g., around 0.4% if the frequency spacing is 30 kHz. Our results successfully demonstrate a low electrical cross talk for a space FDM technology
Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}Eâ„6Ă1019 eV by analyzing cosmic rays with energies above \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}Eâ„5Ă1018 eV arriving within an angular separation of approximately 15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}â. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers
with zenith angles greater than detected with the surface array of
the Pierre Auger Observatory. The measured signals at the ground level are
fitted to muon density distributions predicted with atmospheric cascade models
to obtain the relative shower size as an overall normalization parameter. The
method is evaluated using simulated showers to test its performance. The energy
of the cosmic rays is calibrated using a sub-sample of events reconstructed
with both the fluorescence and surface array techniques. The reconstruction
method described here provides the basis of complementary analyses including an
independent measurement of the energy spectrum of ultra-high energy cosmic rays
using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of
Cosmology and Astroparticle Physics (JCAP
The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)
Contributions of the Pierre Auger Collaboration to the 34th International
Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July
- 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
- âŠ