70 research outputs found

    An environmental dependence of the physical and structural properties in the Hydra cluster galaxies

    Get PDF
    The nearby Hydra cluster (∼50 Mpc) is an ideal laboratory to understand, in detail, the influence of the environment on the morphology and quenching of galaxies in dense environments. We study the Hydra cluster galaxies in the inner regions (1R200) of the cluster using data from the Southern Photometric Local Universe Survey, which uses 12 narrow and broad-band filters in the visible region of the spectrum. We analyse structural (Sérsic index, effective radius) and physical (colours, stellar masses, and star formation rates) properties. Based on this analysis, we find that ∼88 per cent of the Hydra cluster galaxies are quenched. Using the Dressler–Schectman test approach, we also find that the cluster shows possible substructures. Our analysis of the phase-space diagram together with density-based spatial clustering algorithm indicates that Hydra shows an additional substructure that appears to be in front of the cluster centre, which is still falling into it. Our results, thus, suggest that the Hydra cluster might not be relaxed. We analyse the median Sérsic index as a function of wavelength and find that for red [(u − r) ≥2.3] and early-type galaxies it displays a slight increase towards redder filters (13 and 18 per cent, for red and early type, respectively), whereas for blue + green [(u − r)<2.3] galaxies it remains constant. Late-type galaxies show a small decrease of the median Sérsic index towards redder filters. Also, the Sérsic index of galaxies, and thus their structural properties, do not significantly vary as a function of clustercentric distance and density within the cluster; and this is the case regardless of the filter.CL-D acknowledges scholarship from CONICYT-PFCHA/Doctorado Nacional/2019-21191938. CL-D and AM acknowledge support from FONDECYT Regular grant 1181797. CL-D acknowledges also the support given by the ‘Vicerrectoría de Investigacion de la Universidad de La Serena’ program ‘Apoyo al fortalecimiento de grupos de investigacion’. CL-D and AC acknowledges to Steven Bamford and Boris Haeussler with the MegaMorph project. CL-D and DP acknowledge support from fellowship ‘Becas Doctorales Institucionales ULS’, granted by the ‘Vicerrectoría de Investigacion y Postgrado de la Universidad de La Serena’. AM and DP acknowledge funding from the Max Planck Society through a ‘Partner Group’ grant. DP acknowledges support from FONDECYT Regular grant 1181264. This work has used the computing facilities of the Laboratory of Astroinformatics (Instituto de Astronomia, Geofísica e Ciencias Atmosféricas, Departamento de Astronomia/USP, NAT/Unicsul), whose purchase was made possible by FAPESP (grant 2009/54006-4) and the INCT-A. YJ acknowledges financial support from CONICYT PAI (Concurso Nacional de Inserción en la Academia 2017) No. 79170132 and FONDECYT Iniciación 2018 No. 11180558. LS thanks the FAPESP scholarship grant 2016/21664-2. AAC acknowledges support from FAPERJ (grant E26/203.186/2016), CNPq (grants 304971/2016-2 and 401669/2016-5), and the Universidad de Alicante (contract UATALENTO18-02). AMB thanks the FAPESP scholarship grant 2014/11806-9. RA acknowedges support from ANID FONDECYT Regular grant 1202007

    Hi'iaka's physical and dynamical properties using long-term photometric data

    Full text link
    Hi'iaka is the largest satellite of the dwarf planet Haumea, with an estimated area-equivalent diameter of 300 km (Fernández-Valenzuela et al., 2021). It is the best studied satellite in the trans-Neptunian region. Its rotational light-curve was observed with Hubble, for which an approximate rotation period of 9.8 h was obtained (Hastings et al. 2016). The system is very peculiar because it stands out from all other TNO-binary systems. While all other known satellites are thought to be synchronous, Hi'iaka's rotation period is fast compared to the 49 days that takes to complete an orbit around Haumea. Therefore, the study of Haumea-Hi'iaka system yields important information about the formation processes of the whole Haumea's system, which includes another moon (Brown et al. 2006), a ring (Ortiz et al. 2017) and a family of objects (Brown et al. 2007).Our group has been observing Haumea since its discovery, compiling a large database of images since around 20 years ago. Using this set of images we have obtained high accuracy astrometric measurements of the photocenter of the Haumea-Hi'iaka system. We have applied a similar procedure as in Ortiz et al. (2017) to disentangle the position of Haumea from the contribution of Hi'iaka, but for a much larger time span as mentioned above. Therefore, we have been able to determine more accurate orbits for Haumea and Hi'iaka.Additionally, we have carried out two specific observational runs of several days in order to obtain the rotational phase of Hi'iaka at that moment of the two stellar occultations that occurred last year (in April 2021). We used the 1.23-m telescope at Calar Alto Observatory, the Artemis telescope at Teide Observatory and the 1.5-m telescope at Sierra Nevada Observatory to acquire images of the unresolved system. The resulting photometry of these images give rise two rotational light-curves of Haumea in 2021 and 2022. We fitted a fourth-order Fourier function, which represents Haumea's body-shape contribution to the rotational light-curves. From this fit, we took the residuals of the observational data and searched for periodicities within them. We obtained a rotation period in agreement with the estimations in Hastings et al. (2016), but much more accurate. These residuals, when folded to the resulting period, provide Hi'iaka's rotational light-curve. The amplitude obtained for Hi'iaka's rotational light-curve is 0.015 mag, which agrees with the expected signal induced in Haumea's rotational light-curve when accounting for a variable source as that produced by Hi'iaka, i.e., considering the rotational light-curve obtained in Hastings et al. (2016). We have not detected a change in the amplitude of Hi'iaka's rotational light-curve when comparing our data, taken in 2021 and 2022, with those from Hastings et al. (2016), taken in 2010. This means that the obliquity of Hi'iaka must be close to 90º in its orbit around Haumea

    J-PLUS: A first glimpse at spectrophotometry of asteroids -- The MOOJa catalog

    Full text link
    Context: The Javalambre Photometric Local Universe Survey (J-PLUS) is an observational campaign that aims to obtain photometry in 12 ultraviolet-visible filters (0.3-1 {\mu}m) of approximately 8 500 deg{^2} of the sky observable from Javalambre (Teruel, Spain). Due to its characteristics and strategy of observation, this survey will let us analyze a great number of Solar System small bodies, with improved spectrophotometric resolution with respect to previous large-area photometric surveys in optical wavelengths. Aims: The main goal of this work is to present here the first catalog of magnitudes and colors of minor bodies of the Solar System compiled using the first data release (DR1) of the J-PLUS observational campaign: the Moving Objects Observed from Javalambre (MOOJa) catalog. Methods: Using the compiled photometric data we obtained very-low-resolution reflectance (photospectra) spectra of the asteroids. We first used a {\sigma}-clipping algorithm in order to remove outliers and clean the data. We then devised a method to select the optimal solar colors in the J-PLUS photometric system. These solar colors were computed using two different approaches: on one hand, we used different spectra of the Sun, convolved with the filter transmissions of the J-PLUS system, and on the other, we selected a group of solar-type stars in the J-PLUS DR1, according to their computed stellar parameters. Finally, we used the solar colors to obtain the reflectance spectra of the asteroids. Results: We present photometric data in the J-PLUS filters for a total of 3 122 minor bodies (3 666 before outlier removal), and we discuss the main issues of the data, as well as some guidelines to solve the

    J-PLUS:Searching for very metal-poor star candidates using the SPEEM pipeline

    Get PDF
    We explore the stellar content of the Javalambre Photometric Local Universe Survey (J-PLUS) Data Release 2 and show its potential to identify low-metallicity stars using the Stellar Parameters Estimation based on Ensemble Methods (SPEEM) pipeline. SPEEM is a tool to provide determinations of atmospheric parameters for stars and separate stellar sources from quasars, using the unique J-PLUS photometric system. The adoption of adequate selection criteria allows the identification of metal-poor star candidates suitable for spectroscopic follow-up. SPEEM consists of a series of machine learning models which uses a training sample observed by both J-PLUS and the SEGUE spectroscopic survey. The training sample has temperatures Teff between 4\,800 K and 9\,000 K; logg\log g between 1.0 and 4.5, and $-3.
    corecore