30 research outputs found

    Useless or useful? - A literature review

    Get PDF
    Publisher Copyright: © 2021 Baishideng Publishing Group Co., Limited. All rights reserved.Radiotherapy (RT) is the backbone of multimodality treatment of more than half of cancer cases. Despite new modern RT techniques, late complications may occur such as radiation proctitis (RP). The natural history of RP is unpredictable. Minor symptoms may resolve spontaneously or require conservative treatment. On the other hand, for similar and uncomplicated clinical contexts, symptoms may persist and can even be refractory to the progressive increase in treatment measures. Over the last decades, an enormous therapeutic armamentarium has been considered in RP, including hyperbaric oxygen therapy (HBOT). Currently, the evidence regarding the impact of HBOT on RP and its benefits is conflicting. Additional prospective and randomised studies are necessary to validate HBOT's effectiveness in the 'real world' clinical practice. This article reviewed the relevant literature on pathophysiology, clinical presentation, different classifications and discuss RP management including a proposal for a therapeutic algorithm with a focus on HBOT.publishersversionpublishe

    Could Gut Microbiota Make a Difference?—“BiotaCancerSurvivors”: A Case-Control Study

    Get PDF
    In this first analysis, samples from 23 BC survivors (group 1) and 291 healthy female controls (group 2) were characterised through the V3 and V4 regions that encode the “16S rRNA” gene of each bacteria. The samples were sequenced by next-generation sequencing (NGS), and the taxonomy was identified by resorting to Kraken2 and improved with Bracken, using a curated database called ‘GutHealth_DB’. The α and β-diversity analyses were used to determine the richness and evenness of the gut microbiota. A non-parametric Mann-Whitney U test was applied to assess differential abundance between both groups. The Firmicutes/Bacteroidetes (F/B) ratio was calculated using a Kruskal-Wallis chi-squared test. The α-diversity was significantly higher in group 1 (p = 0.28 × 10−12 for the Chao index and p = 1.64 × 10−12 for the ACE index). The Shannon index, a marker of richness and evenness, was not statistically different between the two groups (p = 0.72). The microbiota composition was different between the two groups: a null hypothesis was rejected for PERMANOVA (p = 9.99 × 10−5) and Anosim (p = 0.04) and was not rejected for β-dispersion (p = 0.158), using Unifrac weighted distance. The relative abundance of 14 phyla, 29 classes, 25 orders, 64 families, 116 genera, and 74 species differed significantly between both groups. The F/B ratio was significantly lower in group 1 than in group 2, p < 0.001. Our study allowed us to observe significant taxonomic disparities in the two groups by testing the differences between BC survivors and healthy controls. Additional studies are needed to clarify the involved mechanisms and explore the relationship between microbiota and BC survivorship.publishersversionpublishe

    Flexible organic-inorganic hybrid layer encapsulation for organic opto- electronic devices

    Get PDF
    Abstract In this work we produce and study the flexible organic-inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiN x :H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic-inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10 −5 g/m 2 day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications

    Over 6% Efficient Cu(In,Ga)Se2 Solar Cell Screen-Printed from Oxides on FTO

    Get PDF
    A new approach to fabricate copper, indium, gallium diselenide (CIGSe) solar cells on conductive fluorine-doped tin oxide (FTO) reached an efficiency of over 6% for a champion photovoltaic device. Commercial oxide nanoparticles are formulated into high-quality screen-printable ink based on ethyl cellulose solution in terpineol. The high homogeneity and good adhesion properties of the oxide ink play an important role in obtaining dense and highly crystalline photoabsorber layers. This finding reveals that solution-based screen-printing from readily available oxide precursors provides an interesting cost-effective alternative to current vacuum- and energy-demanding processes of the CIGSe solar cell fabrication.FCT PTDC/CTM-ENE/5387/2014 (PrintPV), Grant Agreement No. 016663, FCT SFRH/BD/121780/2016. Nanochemistry Research Group at INL for valuable discussions. This work was supported by ERDF COMPETE 2020 and Portuguese FCT funds under the PrintPV project (PTDC/CTM-ENE/5387/2014, Grant Agreement No. 016663). B.F.G. is grateful to the FCT for the SFRH/BD/121780/2016 gran

    Attomolar detection of hepatitis C virus core protein powered by molecular antenna-like effect in a graphene field-effect aptasensor

    Get PDF
    Biosensors based on graphene field-effect transistors have become a promising tool for detecting a broad range of analytes. However, their performance is substantially affected by the functionalization protocol. In this work, we use a controlled in-vacuum physical method for the covalent functionalization of graphene to construct ultrasensitive aptamer-based biosensors (aptasensors) able to detect hepatitis C virus core protein. These devices are highly specific and robust, achieving attomolar detection of the viral protein in human blood plasma. Such an improved sensitivity is rationalized by theoretical calculations showing that induced polarization at the graphene interface, caused by the proximity of covalently bound molecular probe, modulates the charge balance at the graphene/aptamer interface. This charge balance causes a net shift of the Dirac cone providing enhanced sensitivity for the attomolar detection of the target proteins. Such an unexpected effect paves the way for using this kind of graphene-based functionalized platforms for ultrasensitive and real-time diagnostics of different diseases.EU Graphene Flagship funding (Grant Graphene Core3 881603), the Ministerio de Ciencia e Innovación of Spain: PID2020-113142RB-C21, the European Structural Funds via FotoArt-CM project (P2018/NMT-4367) and the Portuguese Foundation for Science and Technology (FCT) via the Strategic Funding UIDB/04650/2020. Work at CAB was funded by the Spanish Ministerio de Ciencia e Innovación (MICINN) grant no. PID2019-104903RB-I00 and the Spanish Agencia Estatal de Investigación (AEI) Project no. MDM-2017-0737 - Unidad de Excelencia “María de Maeztu,” and it also benefits from the interdisciplinary framework provided by CSIC through “LifeHUB.CSIC” initiative (PIE 202120E047-CONEXIONES-LIFE). CIBERehd is funded by Instituto de Salud Carlos III (ISCIII). A.N. is supported by the predoctoral fellowship PRE-CAB-BIOMOLECULAS 2 from INTA. B.T-V. is supported by the predoctoral fellowship TS17/16 from INTA and by the CSIC “Garantía Juvenil” contract CAM19_PRE_CAB_001 funded by Comunidad de Madrid (CAM). FCT supports T.D. and P.C. under Ph.D. grants SFRH/BD/08181/2020 and SFRH/BD/128579/2017. M.M. would like to thank Comunidad de Madrid for the predoctoral grant IND2020/BIO-17523. P.A. and C.B. also acknowledge the support provided by La Caixa Foundation through Project LCF/PR/HR21/52410023. L. V. would like to thank Comunidad de Madrid (TRANSNANOAVANSENS program: S2018-NMT-4349) and E.V. García-Frutos for her assistance during the AFM experiments

    Cohesive strength of nanocrystalline ZnO:Ga thin films deposited at room temperature

    Get PDF
    In this study, transparent conducting nanocrystalline ZnO:Ga (GZO) films were deposited by dc magnetron sputtering at room temperature on polymers (and glass for comparison). Electrical resistivities of 8.8 × 10-4 and 2.2 × 10-3 Ω cm were obtained for films deposited on glass and polymers, respectively. The crack onset strain (COS) and the cohesive strength of the coatings were investigated by means of tensile testing. The COS is similar for different GZO coatings and occurs for nominal strains approx. 1%. The cohesive strength of coatings, which was evaluated from the initial part of the crack density evolution, was found to be between 1.3 and 1.4 GPa. For these calculations, a Young's modulus of 112 GPa was used, evaluated by nanoindentation

    Atomic-layer-deposited ultrafine MoS2 nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution

    Get PDF
    Ultrafine molybdenum sulfide (MoS2) nanocrystals are grown on a porous cobalt (Co) foam current collector by atomic layer deposition (ALD) using molybdenum hexacarbonyl and hydrogen sulfide as precursors. When used to catalyze the oxygen evolution reaction (OER), the optimal Co@MoS2 electrode, even with a MoS2 loading as small as 0.06 mg cm-2, exhibits a large cathodic shift of ca. 200 mV in the onset potential (the potential at which the current density is 5 mA cm-2), a low overpotential of only 270 mV to attain an anodic current density of 10 mA cm-2, much smaller charge transfer resistance and substantially improved long-term stability at both low and high current densities, with respect to the bare Co foam electrode, showing substantial promise for use as an efficient, low-cost and durable anode in water electrolyzers.L. F. Liu acknowledges the support of the FCT Investigator grant (no. IF/01595/2014) and the Exploratory grant (No. IF/01595/2014/CP1247/CT0001) from the Portuguese Foundation of Science & Technology (FCT). D. H. Xiong and W. Li are thankful for the financial support from Marie Curie Action COFUND fellowships (NanoTrainforGrowth, Grant Agreement no. 600375) under the FP7 framework. D. H. Xiong also acknowledges the financial support from the China Postdoctoral Science Foundation (No. 2015 T80847). This work was partly funded by the European Commission Horizon 2020 project "CritCat" (Grant Agreement No. 686053).info:eu-repo/semantics/publishedVersio

    Conformal and continuous deposition of bifunctional cobalt phosphide layers on p-silicon nanowire arrays for improved solar hydrogen evolution

    Get PDF
    Vertically aligned p-silicon nanowire (SiNW) arrays have been extensively investigated in recent years as promising photocathodes for solar-driven hydrogen evolution. However, the fabrication of SiNW photocathodes with both high photoelectrocatalytic activity and long-term operational stability using a simple and affordable approach is a challenging task. Herein, we report conformal and continuous deposition of a di-cobalt phosphide (Co2P) layer on lithography-patterned highly ordered SiNW arrays via a cost-effective drop-casting method followed by a low-temperature phosphorization treatment. The as-deposited Co2P layer consists of crystalline nanoparticles and has an intimate contact with SiNWs, forming a well-defined SiNW@Co2P core/shell nanostructure. The conformal and continuous Co2P layer functions as a highly efficient catalyst capable of substantially improving the photoelectrocatalytic activity for the hydrogen evolution reaction (HER) and effectively passivates the SiNWs to protect them from photo-oxidation, thus prolonging the lifetime of the electrode. As a consequence, the SiNW@Co2P photocathode with an optimized Co2P layer thickness exhibits a high photocurrent density of -21.9 mA.cm(-2) at 0 V versus reversible hydrogen electrode and excellent operational stability up to 20 h for solar-driven hydrogen evolution, outperforming many nanostructured silicon photocathodes reported in the literature. The combination of passivation and catalytic functions in a single continuous layer represents a promising strategy for designing high-performance semiconductor photoelectrodes for use in solar-driven water splitting, which may simplify fabrication procedures and potentially reduce production costsThis work was funded by ERDF funds through the Portuguese Operational Programme for Competitiveness and Internationalization COMPETE 2020, and national funds through FCT – The Portuguese Foundation for Science and Technology, under the project “PTDC/CTM-ENE/2349/2014” (Grant Agreement No. 016660). The work is also partially funded by the Portugal-China Bilateral Collaborative Programme (FCT/21102/28/12/2016/S). L. F. Liu acknowledges the financial support of the FCT Investigator Grant (IF/01595/2014) and Exploratory Grant (IF/01595/2014/CP1247/CT0001). L. Qiao acknowledges the financial support of the Ministry of Science and Technology of China (Grant Agreement No. 2016YFE0132400).info:eu-repo/semantics/publishedVersio
    corecore