981 research outputs found

    Positive impact of low-dose, high-energy radiation on bone in partial- and/or full-weightbearing mice

    Get PDF
    Astronauts traveling beyond low Earth orbit will be exposed to galactic cosmic radiation (GCR); understanding how high energy ionizing radiation modifies the bone response to mechanical unloading is important to assuring crew health. To investigate this, we exposed 4-mo-old female Balb/cBYJ mice to an acute space-relevant dose of 0.5 Gy 56Fe or sham (n = ~8/group); 4 days later, half of the mice were also subjected to a ground-based analog for 1/6 g (partial weightbearing) (G/6) for 21 days. Microcomputed tomography (µ-CT) of the distal femur reveals that 56Fe exposure resulted in 65-78% greater volume and improved microarchitecture of cancellous bone after 21 d compared to sham controls. Radiation also leads to significant increases in three measures of energy absorption at the mid-shaft femur and an increase in stiffness of the L4 vertebra. No significant effects of radiation on bone formation indices are detected; however, G/6 leads to reduced % mineralizing surface on the inner mid-tibial bone surface. In separate groups allowed 21 days of weightbearing recovery from G/6 and/or 56Fe exposure, radiation-exposed mice still exhibit greater bone mass and improved microarchitecture vs. sham control. However, femoral bone energy absorption values are no longer higher in the 56Fe-exposed WB mice vs. sham controls. We provide evidence for persistent positive impacts of high-LET radiation exposure preceding a period of full or partial weightbearing on bone mass and microarchitecture in the distal femur and, for full weightbearing mice only and more transiently, cortical bone energy absorption values

    Morally Respectful Listening and its Epistemic Consequences

    Get PDF
    What does it mean to listen to someone respectfully, that is, insofar as they are due recognition respect? This paper addresses that question and gives the following answer: it is to listen in such a way that you are open to being surprised. A specific interpretation of this openness to surprise is then defended

    The HIAD Orbital Flight Demonstration Instrumentation Suite

    Get PDF
    NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has been selected for a Technology Demonstration Mission under the Science and Technology Mission Directorate. HIADs are an enabling technology that can facilitate atmospheric entry of heavy payloads to planets such as Earth and Mars using a deployable aeroshell. The deployable nature of the HIAD technology allows it to overcome the size constraints imposed on current rigid aeroshell entry systems. This permits use of larger aeroshells resulting in increased entry system performance (e.g. higher payload mass and/or volume, higher landing altitude at Mars). The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) is currently scheduled for mid-2021. LOFTID will be launched out of Vandenberg Air Force Base as a secondary payload on an expendable launch vehicle. The flight test will employ a 6m diameter, 70-deg sphere-cone aeroshell and will provide invaluable high-energy orbital re-entry flight data. This data will be essential in supporting the HIAD team to mature the technology to diameters of 10m and greater. Aeroshells of this scale will address near-term commercial applications and potential future NASA missions.LOFTID will incorporate an extensive instrumentation suite totaling over 150 science measurements. This will include thermocouples, heat flux sensors, IR cameras, and a radiometer to characterize the aeroheating environment and aeroshell thermal response. An inertial measurement unit (IMU), GPS, and flush air data system will be included in order to reconstruct the flown trajectory and aerodynamic characteristics. Loadcells will be used to measure the HIAD structural loading, and HD cameras will be mounted on the aft segment looking at the aeroshell to monitor structural response. In addition to the primary instrumentation suite, a new fiber optic sensing system will be used to measure nose temperatures as a technology demonstration. The LOFTID instrumentation suites leverages Agency-wide expertise, with hardware development occurring at Ames Research Center, Langley Research Center, Marshall Space Flight Center and Armstrong Flight Research Center.This presentation will discuss the measurement objectives for the LOFTID mission, and the extensive instrumentation suite that has been selected to capture the HIAD's performance during the high-energy orbital re-entry flight test

    The ChatGPT Artificial Intelligence Chatbot: How Well Does It Answer Accounting Assessment Questions?

    Get PDF
    ChatGPT, a language-learning model chatbot, has garnered considerable attention for its ability to respond to users’ questions. Using data from 14 countries and 186 institutions, we compare ChatGPT and student performance for 28,085 questions from accounting assessments and textbook test banks. As of January 2023, ChatGPT provides correct answers for 56.5 percent of questions and partially correct answers for an additional 9.4 percent of questions. When considering point values for questions, students significantly outperform ChatGPT with a 76.7 percent average on assessments compared to 47.5 percent for ChatGPT if no partial credit is awarded and 56.5 percent if partial credit is awarded. Still, ChatGPT performs better than the student average for 15.8 percent of assessments when we include partial credit. We provide evidence of how ChatGPT performs on different question types, accounting topics, class levels, open/closed assessments, and test bank questions. We also discuss implications for accounting education and research

    HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC

    Get PDF
    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections

    Personalized diagnosis in suspected myocardial infarction

    Get PDF
    Background: In suspected myocardial infarction (MI), guidelines recommend using high-sensitivity cardiac troponin (hscTn)- based approaches. These require fixed assay-specific thresholds and timepoints, without directly integrating clinical information. Using machine-learning techniques including hs-cTn and clinical routine variables, we aimed to build a digital tool to directly estimate the individual probability of MI, allowing for numerous hs-cTn assays. Methods: In 2,575 patients presenting to the emergency department with suspected MI, two ensembles of machine-learning models using single or serial concentrations of six different hs-cTn assays were derived to estimate the individual MI probability ( ARTEMIS model). Discriminative performance of the models was assessed using area under the receiver operating characteristic curve (AUC) and logLoss. Model performance was validated in an external cohort with 1688 patients and tested for global generalizability in 13 international cohorts with 23,411 patients. Results: Eleven routinely available variables including age, sex, cardiovascular risk factors, electrocardiography, and hs-cTn were included in the ARTEMIS models. In the validation and generalization cohorts, excellent discriminative performance was confirmed, superior to hs-cTn only. For the serial hs-cTn measurement model, AUC ranged from 0.92 to 0.98. Good calibration was observed. Using a single hs-cTn measurement, the ARTEMIS model allowed direct rule-out of MI with very high and similar safety but up to tripled efficiency compared to the guideline- recommended strategy. Conclusion We developed and validated diagnostic models to accurately estimate the individual probability of MI, which allow for variable hs-cTn use and flexible timing of resampling. Their digital application may provide rapid, safe and efficient personalized patient care
    corecore