65 research outputs found
On the Minimization of Handover Decision Instability in Wireless Local Area Networks
This paper addresses handover decision instability which impacts negatively
on both user perception and network performances. To this aim, a new technique
called The HandOver Decision STAbility Technique (HODSTAT) is proposed for
horizontal handover in Wireless Local Area Networks (WLAN) based on IEEE
802.11standard. HODSTAT is based on a hysteresis margin analysis that, combined
with a utilitybased function, evaluates the need for the handover and
determines if the handover is needed or avoided. Indeed, if a Mobile Terminal
(MT) only transiently hands over to a better network, the gain from using this
new network may be diminished by the handover overhead and short usage
duration. The approach that we adopt throughout this article aims at reducing
the minimum handover occurrence that leads to the interruption of network
connectivity (this is due to the nature of handover in WLAN which is a break
before make which causes additional delay and packet loss). To this end, MT
rather performs a handover only if the connectivity of the current network is
threatened or if the performance of a neighboring network is really better
comparing the current one with a hysteresis margin. This hysteresis should make
a tradeoff between handover occurrence and the necessity to change the current
network of attachment. Our extensive simulation results show that our proposed
algorithm outperforms other decision stability approaches for handover decision
algorithm.Comment: 13 Pages, IJWM
Load Balancing Evaluation Tools for a Private Cloud: A Comparative Study
Cloud computing turns out to be an emerging technology that revolutionized the world of IT infrastructure. However, since the number of users is increasing daily, the demand for cloud services is increasing too. Thus, congestion occurs on the servers that provide services in the cloud. To avoid congestion, we used load balancer tools such as HAProxy and Nginx to intercept the requests of users and distribute them evenly to the servers. Jmeter is used to measure the performance metrics of least connection algorithm in terms of CPU utilization, response time, and concurrency level. Results showed high performance of HAProxy compared to Nginx in terms of response time and treating requests. Furthermore, we examined the characteristic of availability of the load balancer through deploying redundant load balancers, and we studied the effect of the failure of the load balancer on the quality of service of the end users. Keepalived is used to ensure a smooth transition between the two load balancers. According to the concurrency level, results proved that the number of unsuccessful requests during the failure of the master load balancer is proportionally minuscule compared to the total number of requests sent in a normal situation.
Resource Allocation for Real Time Services in LTE Networks: Resource Allocation Using Cooperative Game Theory and Virtual Token Mechanism
International audienceThe LTE specifications provide QoS for multimedia services with fast connectivity, high mobility and security. However, 3GPP specifications have not defined scheduling algorithms to exploit the LTE characteristics to support real time services. In this article we propose a two level scheduling scheme composed by cooperative game theory, a virtual token mechanism, and the well known algorithms EXP-RULE and Modified-Largest Weighted Delay Firs (M-LWDF) in downlink system. By using cooperative game theory such as bankruptcy game and Shapley value, the proposed mechanism works by forming coalitions between flow classes to distribute the bandwidth fairly among all of them. Both algorithms EXP-RULE and M-LWDF have been modified to use a virtual token mechanism to improve their performance, giving priority to real time flows. By taking the arrival rate of packets into account, the proposed mechanism partially included in previous schedulers has been adapted to this work to increase remarkably the performance of the resource allocation for real time flows. The performance evaluation is conducted in terms of system throughput, Packet loss ratio, total cell spectral efficiency, delay and fairness index
D13.1 Fundamental issues on energy- and bandwidth-efficient communications and networking
Deliverable D13.1 del projecte europeu NEWCOM#The report presents the current status in the research area of energy- and bandwidth-efficient communications and networking and highlights the fundamental issues still open for further investigation. Furthermore, the report presents the Joint Research Activities (JRAs) which will be performed within WP1.3. For each activity there is the description, the identification of the adherence with the identified fundamental open issues, a presentation of the initial results, and a roadmap for the planned joint research work in each topic.Preprin
Performance Study of Adaptive Video Streaming in an Interference Scenario of Femto-Macro Cell Networks
The demand for video traffic is increasing over mobile networks that are taking another shape by its heterogeneity. However, the wireless link capacity cannot cope with the traffic demand. This is due to the interference problem that can be considered as the most important challenge in heterogeneous networks. Consequently, it will result in poor service for the quality of video streaming such as the bad quality delivery, service interruption, etc. In this paper, we propose a solution for interference mitigation in the context of heterogeneous networks through power control mechanism, while guaranteeing the Quality of Service of the video streaming. We derive a model for adapting the video bit rate to match the channel’s achievable bit rate. Our results demonstrate a high satisfaction for video streaming in terms of delay and throughput
LTE Planning for Soft Frequency Reuse
2reservedmixedGiambene G.; Yahiya T. A.Giambene, Giovanni; Yahiya, T. A
The Tactile Internet
International audienceThis book answers the many questions surrounding the Tactile Internet, including its reference architecture and adapted compression methods for conveying haptic information. It also describes the key enablers for deploying the applications of the Tactile Internet.As an antecedent technology, the IoT is tackled, explaining the differences and similarities between the Tactile Internet, the Internet of Things and the Internet of Everything. The essentials of teleoperation systems are summarized and the challenges that face this paradigm in its implementation and deployment are also discussed.Finally, a teleoperation case study demonstrating an application of the Tactile Internet is investigated to demonstrate its functionalities, architecture and performance
Fractional Frequency Reuse for Hierarchical Resource Allocation in Mobile WiMAX Networks
<p/> <p>We propose a frequency planning based on zone switching diversity scheme for multicell OFDMA mobile WiMAX networks. In our approach, we focus on the use of Fractional Frequency Reuse (FFR) for guaranteeing the quality of service for the different service flows in the system. We investigate an architecture that coordinates the allocation of resources in terms of slots (the basic allocation unit in time and frequency domain in an OFDMA frame) between the Radio Resource Controller (RRC) and the Radio Resource Agent (RRA) which resides in the Base Station (BS). The proposed algorithm attempts to capture three types of diversity, namely, mutual interference diversity, traffic diversity, and selective fading channel diversity. As a consequence, the proposed algorithm for slot allocation makes a trade-off between maximizing overall throughput of the system while guaranteeing the Quality of Service (QoS) requirements for a mixture of real-time and non-real-time service flows under different diversity configurations. Our algorithm is evaluated under various cell configurations and traffic models. The results reveal important insights on the trade-off between cell interference suppression and QoS assurance.</p
Performance Study of Adaptive Video Streaming in an Interference Scenario of Femto-Macro Cell Networks
The demand for video traffic is increasing over mobile networks that are taking another shape by its heterogeneity. However, the wireless link capacity cannot cope with the traffic demand. This is due to the interference problem that can be considered as the most important challenge in heterogeneous networks. Consequently, it will result in poor service for the quality of video streaming such as the bad quality delivery, service interruption, etc. In this paper, we propose a solution for interference mitigation in the context of heterogeneous networks through power control mechanism, while guaranteeing the Quality of Service of the video streaming. We derive a model for adapting the video bit rate to match the channel's achievable bit rate. Our results demonstrate a high satisfaction for video streaming in terms of delay and throughput
- …